Formes modulaires de poids 1

Pierre Deligne; Jean-Pierre Serre

Annales scientifiques de l'École Normale Supérieure (1974)

  • Volume: 7, Issue: 4, page 507-530
  • ISSN: 0012-9593

How to cite

top

Deligne, Pierre, and Serre, Jean-Pierre. "Formes modulaires de poids $1$." Annales scientifiques de l'École Normale Supérieure 7.4 (1974): 507-530. <http://eudml.org/doc/81946>.

@article{Deligne1974,
author = {Deligne, Pierre, Serre, Jean-Pierre},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {fre},
number = {4},
pages = {507-530},
publisher = {Elsevier},
title = {Formes modulaires de poids $1$},
url = {http://eudml.org/doc/81946},
volume = {7},
year = {1974},
}

TY - JOUR
AU - Deligne, Pierre
AU - Serre, Jean-Pierre
TI - Formes modulaires de poids $1$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1974
PB - Elsevier
VL - 7
IS - 4
SP - 507
EP - 530
LA - fre
UR - http://eudml.org/doc/81946
ER -

References

top
  1. [1] E. ARTIN, Zur Theorie der L-Reihen mit allgemeinen Gruppencharakteren (Hamb. Abh., vol. 8, 1930, p. 292-306 (Collected Works, p. 165-179)). JFM56.0173.02
  2. [2] A. O. L. ATKIN et J. LEHNER, Hecke operators on Γ0(m) (Math. Ann., vol. 185, 1970, p. 134-160). Zbl0177.34901MR42 #3022
  3. [3] C. CURTIS et I. REINER, Representation theory of finite groups and associative algebras, Intersc. Publ., New York, 1962. Zbl0131.25601MR26 #2519
  4. [4] P. DELIGNE, Formes modulaires et représentations l-adiques (Séminaire Bourbaki, vol. 1968/1969, exposé n° 355, Lect. Notes 179, Springer, 1971, p. 139-172). Zbl0206.49901
  5. [5] P. DELIGNE, La conjecture de Weil. I. (Publ. Math. I.H.E.S., vol. 43, 1974, p. 273-307). Zbl0287.14001MR49 #5013
  6. [6] P. DELIGNE, Formes modulaires et représentations de GL (2) (Lecture Notes, n° 349, Springer, 1973, p. 55-105). Zbl0271.10032MR50 #240
  7. [7] P. DELIGNE et M. RAPOPORT, Les schémas de modules de courbes elliptiques (Lecture Notes, n° 349, Springer, 1973, p. 143-316). Zbl0281.14010MR49 #2762
  8. [8] G. H. HARDY et E. M. WRIGHT, An introduction to the theory of numbers, 3rd edit., Oxford, 1954. Zbl0058.03301MR16,673c
  9. [9] E. HECKE, Mathematische Werke (zw. Aufl.). Vandenhoeck und Ruprecht, Göttingen, 1970. Zbl0205.28902MR51 #7795
  10. [10] H. JACQUET, Automorphic Forms on GL (2), Part II (Lecture Notes, n° 278, Springer, 1972). Zbl0243.12005MR58 #27778
  11. [11] R. P. LANGLANDS, Modular forms and l-adic representations (Lecture Notes, n° 349, Springer, 1973, p. 361-500). Zbl0279.14007MR50 #7095
  12. [12] W. LI, Newforms and Functional Equations, Dept. of Maths., Berkeley, 1974 (à paraître aux Math. Ann.). Zbl0278.10026
  13. [13] T. MIYAKE, On automorphic forms on GL2 and Hecke operators (Ann. of Maths., vol. 94, 1971, p. 174-189). Zbl0204.54201MR45 #8607
  14. [14] A. P. OGG, On the eigenvalues of Hecke operators (Math. Ann., vol. 179, 1969, p. 101-108). Zbl0169.10102MR42 #4492
  15. [15] A. P. OGG, On a convolution of L-series (Invent. Math., vol. 7, 1969, p. 297-312). Zbl0205.50902MR40 #88
  16. [16] A. P. OGG, Modular forms and Dirichlet series, W. A. Benjamin Publ., New York, 1969. Zbl0191.38101
  17. [17] I. I. PIATECKII-SHAPIRO, Zeta functions of modular curves (Lecture Notes, n° 349, Springer, 1973, p. 317-360). Zbl0308.14004MR49 #2744
  18. [18] R. A. RANKIN, Contributions to the theory of Ramanujan's function τ(n) and similar arithmetical functions. I, II (Proc. Cambridge Phil. Soc., vol. 35, 1939, p. 351-372). Zbl0021.39202MR1,69dJFM65.0353.01
  19. [19] R. A. RANKIN, An Ω-result for the coefficients of cusp forms (Math. Ann., vol. 203, 1973, p. 239-250). Zbl0254.10021MR48 #241
  20. [20] I. SCHUR, Arithmetische Untersuchungen über endliche Gruppen linearer Substitutionen (Sitz. Pr. Akad. Wiss., 1906, p. 164-184 (Gesam. Abhl., I, p. 177-197, Springer, 1973)). Zbl37.0160.01JFM37.0160.01
  21. [21] J.-P. SERRE, Cours d'Arithmétique, Presses Universitaires de France, Paris, 1970. Zbl0225.12002MR41 #138
  22. [22] J.-P. SERRE, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques (Invent. Math., vol. 15, 1972, p. 259-331). Zbl0235.14012MR52 #8126
  23. [23] J.-P. SERRE, Divisibilité des coefficients des formes modulaires de poids entier (C. R. Acad. Sci. Paris, t. 279, série A, 1974, p. 679-682). Zbl0304.10017MR52 #3060
  24. [24] G. SHIMURA, Introduction to the arithmetic theory of automorphic functions (Publ. Math. Soc. Japan, vol. 11, Princeton Univ. Press., 1971). Zbl0221.10029
  25. [25] H. P. F. SWINNERTON-DYER, On l-adic representations and congruences for coefficients of modular forms (Lecture Notes, n° 350, Springer, 1973, p. 1-55). Zbl0267.10032MR53 #10717a
  26. [26] A. WEIL, Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen (Math. Ann., vol. 168, 1967, p. 149-156). Zbl0158.08601MR34 #7473
  27. [27] A. WEIL, Dirichlet Series and Automorphic Forms (Lezioni Fermiane). (Lecture Notes, n° 189, Springer, 1971). Zbl0218.10046

Citations in EuDML Documents

top
  1. Jean-Loup Waldspurger, Relèvement et formes quadratiques à 4 variables
  2. Guy Henniart, Une forme icosaédrale de poids 1
  3. Adriaan Herremans, A combinatorial interpretation of Serre's conjecture on modular Galois representations
  4. Joseph Oesterlé, Travaux de Wiles (et Taylor, ...), partie II
  5. Mark D. Coleman, The Hooley-Huxley contour method for problems in number fields III : frobenian functions
  6. Arnaud Jehanne, Michael Müller, Modularity of an odd icosahedral representation
  7. François Morain, Calcul du nombre de points sur une courbe elliptique dans un corps fini : aspects algorithmiques
  8. P. Guerzhoy, On Ramanujan congruences between special values of Hecke and Dirichlet L-functions
  9. Claus Mazanti Sorensen, A generalization of level-raising congruences for algebraic modular forms
  10. Pierre Cartier, La conjecture locale de Langlands pour G L ( 2 ) et la démonstration de Ph. Kutzko

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.