Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to -shifts
Veronica Baker[1]; Marcy Barge[1]; Jaroslaw Kwapisz[1]
- [1] Montana State University Department of Mathematical Sciences Bozeman MT 59717-2400 (USA)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 7, page 2213-2248
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBaker, Veronica, Barge, Marcy, and Kwapisz, Jaroslaw. "Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to $\beta $-shifts." Annales de l’institut Fourier 56.7 (2006): 2213-2248. <http://eudml.org/doc/10202>.
@article{Baker2006,
abstract = {This article is devoted to the study of the translation flow on self-similar tilings associated with a substitution of Pisot type. We construct a geometric representation and give necessary and sufficient conditions for the flow to have pure discrete spectrum. As an application we demonstrate that, for certain beta-shifts, the natural extension is naturally isomorphic to a toral automorphism.},
affiliation = {Montana State University Department of Mathematical Sciences Bozeman MT 59717-2400 (USA); Montana State University Department of Mathematical Sciences Bozeman MT 59717-2400 (USA); Montana State University Department of Mathematical Sciences Bozeman MT 59717-2400 (USA)},
author = {Baker, Veronica, Barge, Marcy, Kwapisz, Jaroslaw},
journal = {Annales de l’institut Fourier},
keywords = {Substitution; tilings; pure discrete spectrum spectrum; Pisot; substitution},
language = {eng},
number = {7},
pages = {2213-2248},
publisher = {Association des Annales de l’institut Fourier},
title = {Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to $\beta $-shifts},
url = {http://eudml.org/doc/10202},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Baker, Veronica
AU - Barge, Marcy
AU - Kwapisz, Jaroslaw
TI - Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to $\beta $-shifts
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 7
SP - 2213
EP - 2248
AB - This article is devoted to the study of the translation flow on self-similar tilings associated with a substitution of Pisot type. We construct a geometric representation and give necessary and sufficient conditions for the flow to have pure discrete spectrum. As an application we demonstrate that, for certain beta-shifts, the natural extension is naturally isomorphic to a toral automorphism.
LA - eng
KW - Substitution; tilings; pure discrete spectrum spectrum; Pisot; substitution
UR - http://eudml.org/doc/10202
ER -
References
top- S. Akiyama, On the boundary of self affine tilings generated by Pisot numbers, J. Math. Soc. Japan 54 (2002), 283-308 Zbl1032.11033MR1883519
- S. Akiyama, H. Rao, W. Steiner, A certain finiteness property of Pisot number systems, J. Number Theory 107 (2004), 135-160 Zbl1052.11055MR2059954
- P. Arnoux, S. Ito, Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon Stevin 8 (2001), 181-207 Zbl1007.37001MR1838930
- M. Barge, B. Diamond, A complete invariant for the topology of one-dimensional substitution tiling spaces., Ergodic Theory Dynam. Systems 21 (2001), 1333-1358 Zbl0986.37015MR1855835
- M. Barge, J. Kwapisz, Geometric Theory of Unimodular Pisot Substitutions, American J. of Math. 128 (2006), 1219-1282 Zbl1152.37011MR2262174
- M. Barge, J. Kwapisz, Elements of the theory of unimodular Pisot substitutions with an application to -shifts, Algebraic and Topological Dynamics (Nov 2005), 89-99, Amer. Math. Soc., Providence, RI Zbl1116.37011MR2180231
- V. Berthé, A. Siegel, Tilings associated with beta-numeration and substitutions, Integers: Electronic journal of Combinatorial Number Theory 5 (2005) Zbl1139.37008MR2191748
- A. Bertrand, Développements en base de Pisot et répartition modulo , C. R. Acad. Sci. Paris 285 (1977), A419-A421 Zbl0362.10040MR447134
- V. Canterini, A. Siegel, Geometric representation of substitutions of Pisot type, Trans. Amer. Math. Soc. 353 (2001), 5121-5144 Zbl1142.37302MR1852097
- A. Clark, L. Sadun, When size matters: subshifts and their related tiling spaces, Ergodic Theory Dynam. Systems 23 (2003), 1043-1057 Zbl1042.37008MR1997967
- H. Ei, S. Ito, Tilings from some non-irreducible, Pisot substitutions, Discrete Math. and Theo. Comp. Science 8 (2005), 81-122 Zbl1153.37323MR2164061
- H. Ei, S. Ito, H. Rao, Atomic surfaces, tilings and coincidences II: Reducible case., (2006) Zbl1119.52013
- C. Frougny, B. Solomyak, Finite beta-expansions, Ergodic Theory Dynam. Systems 12 (1992), 713-723 Zbl0814.68065MR1200339
- M. Hollander, Linear Numeration Systems, Finite Beta Expansions, and Discrete Spectrum of Substitution Dynamical Systems, (1996)
- B. Host, Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable, Ergodic Theory Dynam. Systems 6 (1986), 529-540 Zbl0625.28011MR873430
- S. Ito, H. Rao, Atomic surfaces, tilings and coincidences I: Irreducible case, Isreal J. of Math. 153 (2006), 129-156 Zbl1143.37013MR2254640
- R. Kenyon, A. Vershik, Arithmetic construction of sofic partitions of hyperbolic toral automorphisms, Ergodic Theory Dynam. Systems 18 (1998), 357-372 Zbl0915.58077MR1619562
- J. Kwapisz, Dynamical Proof of Pisot’s Theorem, Canad. Math. Bull. 49 (2006), 108-112 Zbl1121.11072MR2198723
- B. Mossé, Puissances de mots et reconnaissabilité des points fixes d’une substitution, Theoret. Comput. Sci. 99 (1992), 327-334 Zbl0763.68049MR1168468
- M. Queffélec, Substitution dynamical systems-spectral analysis, (1987), Springer-Verlag, Berlin Zbl0642.28013MR924156
- G. Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France 110 (1982), 147-178 Zbl0522.10032MR667748
- K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc. 12 (1980), 269-278 Zbl0494.10040MR576976
- K. Schmidt, Algebraic coding of expansive group automorphisms and two-sided beta-shifts, Mh. Math. 129 (2000), 37-61 Zbl1010.37005MR1741033
- N. Sidorov, Bijective and general arithmetic codings for Pisot toral automorphisms, J. Dynam. Control Systems 7 (2001), 447-472 Zbl1134.37313MR1854032
- N. Sidorov, Arithmetic dynamics, Topics in dynamics and control theory, London Mathematical Society Lecture Note Series 310 (2003), 145-189 Zbl1051.37007MR2052279
- V. F. Sirvent, Y. Wang, Self-affine tiling via substitution dynamical systems and Rauzy fractals, Pacific J. Math. 73 (2002), 465-485 Zbl1048.37015MR1926787
- B. Solomyak, Dynamics of self-similar tilings, Ergodic Theory Dynam. Systems 17 (1997), 695-738 Zbl0884.58062MR1452190
- W. P. Thurston, Groups, tilings and finite state automata, Lectures notes distributed in conjunction with the Colloquium Series, in (1989)
- J. M. Thuswaldner, Unimodular Pisot Substitutions and Their Associated Tiles, (2005) Zbl1161.37016
- W. A. Veech, The metric theory of interval exchange transformations I. Generic spectral properties., American Journal of Mathematics 106 (1984), 1331-1359 Zbl0631.28006MR765582
- R. F. Williams, Classification of one-dimensional attractors, Proc. Symp. Pure Math 14 (1970), 341-361 Zbl0213.50401MR266227
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.