Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to β -shifts

Veronica Baker[1]; Marcy Barge[1]; Jaroslaw Kwapisz[1]

  • [1] Montana State University Department of Mathematical Sciences Bozeman MT 59717-2400 (USA)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 7, page 2213-2248
  • ISSN: 0373-0956

Abstract

top
This article is devoted to the study of the translation flow on self-similar tilings associated with a substitution of Pisot type. We construct a geometric representation and give necessary and sufficient conditions for the flow to have pure discrete spectrum. As an application we demonstrate that, for certain beta-shifts, the natural extension is naturally isomorphic to a toral automorphism.

How to cite

top

Baker, Veronica, Barge, Marcy, and Kwapisz, Jaroslaw. "Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to $\beta $-shifts." Annales de l’institut Fourier 56.7 (2006): 2213-2248. <http://eudml.org/doc/10202>.

@article{Baker2006,
abstract = {This article is devoted to the study of the translation flow on self-similar tilings associated with a substitution of Pisot type. We construct a geometric representation and give necessary and sufficient conditions for the flow to have pure discrete spectrum. As an application we demonstrate that, for certain beta-shifts, the natural extension is naturally isomorphic to a toral automorphism.},
affiliation = {Montana State University Department of Mathematical Sciences Bozeman MT 59717-2400 (USA); Montana State University Department of Mathematical Sciences Bozeman MT 59717-2400 (USA); Montana State University Department of Mathematical Sciences Bozeman MT 59717-2400 (USA)},
author = {Baker, Veronica, Barge, Marcy, Kwapisz, Jaroslaw},
journal = {Annales de l’institut Fourier},
keywords = {Substitution; tilings; pure discrete spectrum spectrum; Pisot; substitution},
language = {eng},
number = {7},
pages = {2213-2248},
publisher = {Association des Annales de l’institut Fourier},
title = {Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to $\beta $-shifts},
url = {http://eudml.org/doc/10202},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Baker, Veronica
AU - Barge, Marcy
AU - Kwapisz, Jaroslaw
TI - Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to $\beta $-shifts
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 7
SP - 2213
EP - 2248
AB - This article is devoted to the study of the translation flow on self-similar tilings associated with a substitution of Pisot type. We construct a geometric representation and give necessary and sufficient conditions for the flow to have pure discrete spectrum. As an application we demonstrate that, for certain beta-shifts, the natural extension is naturally isomorphic to a toral automorphism.
LA - eng
KW - Substitution; tilings; pure discrete spectrum spectrum; Pisot; substitution
UR - http://eudml.org/doc/10202
ER -

References

top
  1. S. Akiyama, On the boundary of self affine tilings generated by Pisot numbers, J. Math. Soc. Japan 54 (2002), 283-308 Zbl1032.11033MR1883519
  2. S. Akiyama, H. Rao, W. Steiner, A certain finiteness property of Pisot number systems, J. Number Theory 107 (2004), 135-160 Zbl1052.11055MR2059954
  3. P. Arnoux, S. Ito, Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon Stevin 8 (2001), 181-207 Zbl1007.37001MR1838930
  4. M. Barge, B. Diamond, A complete invariant for the topology of one-dimensional substitution tiling spaces., Ergodic Theory Dynam. Systems 21 (2001), 1333-1358 Zbl0986.37015MR1855835
  5. M. Barge, J. Kwapisz, Geometric Theory of Unimodular Pisot Substitutions, American J. of Math. 128 (2006), 1219-1282 Zbl1152.37011MR2262174
  6. M. Barge, J. Kwapisz, Elements of the theory of unimodular Pisot substitutions with an application to β -shifts, Algebraic and Topological Dynamics (Nov 2005), 89-99, Amer. Math. Soc., Providence, RI Zbl1116.37011MR2180231
  7. V. Berthé, A. Siegel, Tilings associated with beta-numeration and substitutions, Integers: Electronic journal of Combinatorial Number Theory 5 (2005) Zbl1139.37008MR2191748
  8. A. Bertrand, Développements en base de Pisot et répartition modulo 1 , C. R. Acad. Sci. Paris 285 (1977), A419-A421 Zbl0362.10040MR447134
  9. V. Canterini, A. Siegel, Geometric representation of substitutions of Pisot type, Trans. Amer. Math. Soc. 353 (2001), 5121-5144 Zbl1142.37302MR1852097
  10. A. Clark, L. Sadun, When size matters: subshifts and their related tiling spaces, Ergodic Theory Dynam. Systems 23 (2003), 1043-1057 Zbl1042.37008MR1997967
  11. H. Ei, S. Ito, Tilings from some non-irreducible, Pisot substitutions, Discrete Math. and Theo. Comp. Science 8 (2005), 81-122 Zbl1153.37323MR2164061
  12. H. Ei, S. Ito, H. Rao, Atomic surfaces, tilings and coincidences II: Reducible case., (2006) Zbl1119.52013
  13. C. Frougny, B. Solomyak, Finite beta-expansions, Ergodic Theory Dynam. Systems 12 (1992), 713-723 Zbl0814.68065MR1200339
  14. M. Hollander, Linear Numeration Systems, Finite Beta Expansions, and Discrete Spectrum of Substitution Dynamical Systems, (1996) 
  15. B. Host, Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable, Ergodic Theory Dynam. Systems 6 (1986), 529-540 Zbl0625.28011MR873430
  16. S. Ito, H. Rao, Atomic surfaces, tilings and coincidences I: Irreducible case, Isreal J. of Math. 153 (2006), 129-156 Zbl1143.37013MR2254640
  17. R. Kenyon, A. Vershik, Arithmetic construction of sofic partitions of hyperbolic toral automorphisms, Ergodic Theory Dynam. Systems 18 (1998), 357-372 Zbl0915.58077MR1619562
  18. J. Kwapisz, Dynamical Proof of Pisot’s Theorem, Canad. Math. Bull. 49 (2006), 108-112 Zbl1121.11072MR2198723
  19. B. Mossé, Puissances de mots et reconnaissabilité des points fixes d’une substitution, Theoret. Comput. Sci. 99 (1992), 327-334 Zbl0763.68049MR1168468
  20. M. Queffélec, Substitution dynamical systems-spectral analysis, (1987), Springer-Verlag, Berlin Zbl0642.28013MR924156
  21. G. Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France 110 (1982), 147-178 Zbl0522.10032MR667748
  22. K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc. 12 (1980), 269-278 Zbl0494.10040MR576976
  23. K. Schmidt, Algebraic coding of expansive group automorphisms and two-sided beta-shifts, Mh. Math. 129 (2000), 37-61 Zbl1010.37005MR1741033
  24. N. Sidorov, Bijective and general arithmetic codings for Pisot toral automorphisms, J. Dynam. Control Systems 7 (2001), 447-472 Zbl1134.37313MR1854032
  25. N. Sidorov, Arithmetic dynamics, Topics in dynamics and control theory, London Mathematical Society Lecture Note Series 310 (2003), 145-189 Zbl1051.37007MR2052279
  26. V. F. Sirvent, Y. Wang, Self-affine tiling via substitution dynamical systems and Rauzy fractals, Pacific J. Math. 73 (2002), 465-485 Zbl1048.37015MR1926787
  27. B. Solomyak, Dynamics of self-similar tilings, Ergodic Theory Dynam. Systems 17 (1997), 695-738 Zbl0884.58062MR1452190
  28. W. P. Thurston, Groups, tilings and finite state automata, Lectures notes distributed in conjunction with the Colloquium Series, in (1989) 
  29. J. M. Thuswaldner, Unimodular Pisot Substitutions and Their Associated Tiles, (2005) Zbl1161.37016
  30. W. A. Veech, The metric theory of interval exchange transformations I. Generic spectral properties., American Journal of Mathematics 106 (1984), 1331-1359 Zbl0631.28006MR765582
  31. R. F. Williams, Classification of one-dimensional attractors, Proc. Symp. Pure Math 14 (1970), 341-361 Zbl0213.50401MR266227

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.