Unimodular Pisot substitutions and their associated tiles

Jörg M. Thuswaldner[1]

  • [1] Institut für Mathematik und Angewandte Geometrie Abteilung für Mathematik und Statistik Montanuniversität Leoben Franz-Josef-Strasse 18 A-8700 LEOBEN, AUSTRIA

Journal de Théorie des Nombres de Bordeaux (2006)

  • Volume: 18, Issue: 2, page 487-536
  • ISSN: 1246-7405

Abstract

top
Let σ be a unimodular Pisot substitution over a d letter alphabet and let X 1 , ... , X d be the associated Rauzy fractals. In the present paper we want to investigate the boundaries X i ( 1 i d ) of these fractals. To this matter we define a certain graph, the so-called contact graph 𝒞 of σ . If σ satisfies a combinatorial condition called the super coincidence condition the contact graph can be used to set up a self-affine graph directed system whose attractors are certain pieces of the boundaries X 1 , ... , X d . From this graph directed system we derive an easy formula for the fractal dimension of X i in which eigenvalues of the adjacency matrix of 𝒞 occur.An advantage of the contact graph is its relatively simple structure, which makes it possible to construct it for large classes of substitutions at once. In the present paper we construct the contact graph explicitly for a class of unimodular Pisot substitutions related to β -expansions with respect to cubic Pisot units. In particular, we deal with substitutions of the form σ ( 1 ) = 1 ... 1 b times 2 , σ ( 2 ) = 1 ... 1 a times 3 , σ ( 3 ) = 1 where b a 1 . It is well known that these substitutions satisfy the above mentioned super coincidence condition. Thus we can give an explicit formula for the fractal dimension of the boundaries of the Rauzy fractals related to these substitutions.

How to cite

top

Thuswaldner, Jörg M.. "Unimodular Pisot substitutions and their associated tiles." Journal de Théorie des Nombres de Bordeaux 18.2 (2006): 487-536. <http://eudml.org/doc/249630>.

@article{Thuswaldner2006,
abstract = {Let $\sigma $ be a unimodular Pisot substitution over a $d$ letter alphabet and let $X_1,\ldots , X_d$ be the associated Rauzy fractals. In the present paper we want to investigate the boundaries $\partial X_i$ ($1\le i\le d$) of these fractals. To this matter we define a certain graph, the so-called contact graph$\mathcal\{C\}$ of $\sigma $. If $\sigma $ satisfies a combinatorial condition called the super coincidence condition the contact graph can be used to set up a self-affine graph directed system whose attractors are certain pieces of the boundaries $\partial X_1,\ldots , \partial X_d$. From this graph directed system we derive an easy formula for the fractal dimension of $\partial X_i$ in which eigenvalues of the adjacency matrix of $\mathcal\{C\}$ occur.An advantage of the contact graph is its relatively simple structure, which makes it possible to construct it for large classes of substitutions at once. In the present paper we construct the contact graph explicitly for a class of unimodular Pisot substitutions related to $\beta $-expansions with respect to cubic Pisot units. In particular, we deal with substitutions of the form\begin\{equation*\} \sigma (1) = \underbrace\{1\ldots 1\}\_\{b\,\hbox\{times\}\}2, \quad \sigma (2) =\underbrace\{1\ldots 1\}\_\{a\,\hbox\{times\}\}3, \quad \sigma (3) =1 \end\{equation*\}where $b\ge a\ge 1$. It is well known that these substitutions satisfy the above mentioned super coincidence condition. Thus we can give an explicit formula for the fractal dimension of the boundaries of the Rauzy fractals related to these substitutions.},
affiliation = {Institut für Mathematik und Angewandte Geometrie Abteilung für Mathematik und Statistik Montanuniversität Leoben Franz-Josef-Strasse 18 A-8700 LEOBEN, AUSTRIA},
author = {Thuswaldner, Jörg M.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {unimodular Pisot substitution; tiles; Pisot-Vijayaraghavan number; Rauzy fractals; contact graph},
language = {eng},
number = {2},
pages = {487-536},
publisher = {Université Bordeaux 1},
title = {Unimodular Pisot substitutions and their associated tiles},
url = {http://eudml.org/doc/249630},
volume = {18},
year = {2006},
}

TY - JOUR
AU - Thuswaldner, Jörg M.
TI - Unimodular Pisot substitutions and their associated tiles
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2006
PB - Université Bordeaux 1
VL - 18
IS - 2
SP - 487
EP - 536
AB - Let $\sigma $ be a unimodular Pisot substitution over a $d$ letter alphabet and let $X_1,\ldots , X_d$ be the associated Rauzy fractals. In the present paper we want to investigate the boundaries $\partial X_i$ ($1\le i\le d$) of these fractals. To this matter we define a certain graph, the so-called contact graph$\mathcal{C}$ of $\sigma $. If $\sigma $ satisfies a combinatorial condition called the super coincidence condition the contact graph can be used to set up a self-affine graph directed system whose attractors are certain pieces of the boundaries $\partial X_1,\ldots , \partial X_d$. From this graph directed system we derive an easy formula for the fractal dimension of $\partial X_i$ in which eigenvalues of the adjacency matrix of $\mathcal{C}$ occur.An advantage of the contact graph is its relatively simple structure, which makes it possible to construct it for large classes of substitutions at once. In the present paper we construct the contact graph explicitly for a class of unimodular Pisot substitutions related to $\beta $-expansions with respect to cubic Pisot units. In particular, we deal with substitutions of the form\begin{equation*} \sigma (1) = \underbrace{1\ldots 1}_{b\,\hbox{times}}2, \quad \sigma (2) =\underbrace{1\ldots 1}_{a\,\hbox{times}}3, \quad \sigma (3) =1 \end{equation*}where $b\ge a\ge 1$. It is well known that these substitutions satisfy the above mentioned super coincidence condition. Thus we can give an explicit formula for the fractal dimension of the boundaries of the Rauzy fractals related to these substitutions.
LA - eng
KW - unimodular Pisot substitution; tiles; Pisot-Vijayaraghavan number; Rauzy fractals; contact graph
UR - http://eudml.org/doc/249630
ER -

References

top
  1. Akiyama, S.Self affine tilings and Pisot numeration systems. In Number Theory and its Applications (1999), K. Győry and S. Kanemitsu, Eds., Kluwer, pp. 1–17. Zbl0999.11065MR1738803
  2. Akiyama, S.On the boundary of self affine tilings generated by Pisot numbers. J. Math. Soc. Japan 54, 2 (2002), 283–308. Zbl1032.11033MR1883519
  3. Akiyama, S., Sadahiro, T.A self-similar tiling generated by the minimal Pisot number. Acta Math. Info. Univ. Ostraviensis 6 (1998), 9–26. Zbl1024.11066MR1822510
  4. Arnoux, P., Berthé, V., Ei, H., Ito, S.Tilings, quasicrystals, discrete planes, generalized substitutions, and multidimensional continued fractions. In Discrete models: combinatorics, computation, and geometry (Paris, 2001), Discrete Math. Theor. Comput. Sci. Proc., AA. Maison Inform. Math. Discrèt. (MIMD), Paris, 2001, pp. 059–078 (electronic). Zbl1017.68147MR1888763
  5. Arnoux, P., Berthé, V. Siegel, A.Two-dimensional iterated morphisms and discrete planes. Theoret. Comput. Sci. 319, 1-3 (2004), 145–176. Zbl1068.37004MR2074952
  6. Arnoux, P. Ito, S.Pisot substitutions and Rauzy fractals. Bull. Belg. Math. Soc. Simon Stevin 8, 2 (2001), 181–207. Journées Montoises d’Informatique Théorique (Marne-la-Vallée, 2000). Zbl1007.37001MR1838930
  7. Barge, M. Diamond, B.Coincidence for substitutions of Pisot type. Bull. Soc. Math. France 130, 4 (2002), 619–626. Zbl1028.37008MR1947456
  8. Barge, M. Kwapisz, J.Geometric theory of unimodular Pisot substitutions. Preprint. Zbl1152.37011
  9. Berthé, V. Siegel, A.Purely periodic beta-expansions in the Pisot non-unit case. Preprint. Zbl1197.11139
  10. Berthé, V. Siegel, A.Tilings associated with beta-numeration and substitutions. Integers 5 (2005), no. 3, A2, (electronic). Zbl1139.37008MR2191748
  11. Canterini, V. Siegel, A.Automate des préfixes-suffixes associé à une substitution primitive. J. Théor. Nombres Bordeaux 13, 2 (2001), 353–369. Zbl1071.37011MR1879663
  12. Canterini, V. Siegel, A.Geometric representation of substitutions of Pisot type. Trans. Amer. Math. Soc. 353, 12 (2001), 5121–5144 (electronic). Zbl1142.37302MR1852097
  13. Deliu, A., Geronimo, J., Shonkwiler, R. Hardin, D.Dimension associated with recurrent self similar sets. Math. Proc. Camb. Philos. Soc. 110 (1991), 327–336. Zbl0742.28002MR1113431
  14. Dumont, J. M. Thomas, A.Digital sum moments and substitutions. Acta Arith. 64 (1993), 205–225. Zbl0774.11041MR1225425
  15. Falconer, K. J.The Hausdorff dimension of self-affine fractals. Math. Proc. Camb. Phil. Soc. 103 (1988), 339–350. Zbl0642.28005MR923687
  16. Falconer, K. J. Fractal Geometry. John Wiley and Sons, Chichester, 1990. Zbl0689.28003MR1102677
  17. Falconer, K. J.The dimension of self-affine fractals II. Math. Proc. Camb. Phil. Soc. 111 (1992), 169–179. Zbl0797.28004MR1131488
  18. Falconer, K. J. Techniques in Fractal Geometry. John Wiley and Sons, Chichester, New York, Weinheim, Brisbane, Singapore, Toronto, 1997. Zbl0869.28003MR1449135
  19. Feng, D.-J., Furukado, M., Ito, S. Wu, J.Pisot substitutions and the Hausdorff dimension of boundaries of atomic surfaces. Tsukuba J. Math. 30 (2006), 195–224. Zbl1130.37318MR2248292
  20. Fogg, N. P. Substitutions in dynamics, arithmetics and combinatorics. Vol. 1794 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002. Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel. Zbl1014.11015MR1970385
  21. Frougny, C. Solomyak, B.Finite beta-expansions. Ergodic Theory Dynam. Systems 12, 4 (1992), 713–723. Zbl0814.68065MR1200339
  22. Gröchenig, K. Haas, A.Self-similar lattice tilings. J. Fourier Anal. Appl. 1 (1994), 131–170. Zbl0978.28500MR1348740
  23. Holton, C. Zamboni, L. Q.Geometric realizations of substitutions. Bull. Soc. Math. France 126, 2 (1998), 149–179. Zbl0931.11004MR1675970
  24. Ito, S. Kimura, M.On Rauzy fractal. Japan J. Indust. Appl. Math. 8, 3 (1991), 461–486. Zbl0734.28010MR1137652
  25. Ito, S. Rao, H.Atomic surfaces, Tilings and coincidence I. Irreducible case. Israel J. Math., to appear. Zbl1143.37013MR2254640
  26. Ito, S. Sano, Y.Substitutions, atomic surfaces, and periodic beta expansions. In Analytic number theory (Beijing/Kyoto, 1999), vol. 6 of Dev. Math. Kluwer Acad. Publ., Dordrecht, 2002, pp. 183–194. Zbl1022.11002MR1901982
  27. Lind, D. Marcus, B. An introduction to symbolic dynamics and coding. Cambridge University Press, Cambridge, 1995. Zbl1106.37301MR1369092
  28. Mauldin, R. D. Williams, S. C.Hausdorff dimension in graph directed constructions. Trans. Amer. Math. Soc. 309 (1988), 811–829. Zbl0706.28007MR961615
  29. Messaoudi, A.Propriétés arithmétiques et dynamiques du fractal de Rauzy. J. Théor. Nombres Bordeaux 10, 1 (1998), 135–162. Zbl0918.11048MR1827290
  30. Messaoudi, A.Frontière du fractal de Rauzy et système de numération complexe. Acta Arith. 95, 3 (2000), 195–224. Zbl0968.28005MR1793161
  31. Mossé, B.Recognizability of substitutions and complexity of automatic sequences. Bull. Soc. Math. Fr. 124, 2 (1996), 329–346. Zbl0855.68072MR1414542
  32. Parry, W.On the β -expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960), 401–416. Zbl0099.28103MR142719
  33. Queffélec, M. Substitution dynamical systems—spectral analysis. Vol. 1294 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1987. Zbl0642.28013
  34. Rauzy, G.Nombres algébriques et substitutions. Bull. Soc. Math. France 110, 2 (1982), 147–178. Zbl0522.10032MR667748
  35. Sano, Y., Arnoux, P. Ito, S.Higher dimensional extensions of substitutions and their dual maps. J. Anal. Math. 83 (2001), 183–206. Zbl0987.11013MR1828491
  36. Scheicher, K. Thuswaldner, J. M.Canonical number systems, counting automata and fractals. Math. Proc. Cambridge Philos. Soc. 133, 1 (2002), 163–182. Zbl1001.68070MR1900260
  37. Scheicher, K. Thuswaldner, J. M.Neighbours of self-affine tiles in lattice tilings. In Proceedings of the Conference “Fractals in Graz” (2002), P. Grabner and W. Woess, Eds., pp. 241–262. Zbl1040.52013MR2091708
  38. Siegel, A.Représentation des systèmes dynamiques substitutifs non unimodulaires. Ergodic Theory Dynam. Systems 23, 4 (2003), 1247–1273. Zbl1052.37009MR1997975
  39. Siegel, A.Pure discrete spectrum dynamical system and periodic tiling associated with a substitution. Ann. Inst. Fourier (Grenoble) 54, 2 (2004), 341–381. Zbl1083.37009MR2073838
  40. Sirvent, V. F. Wang, Y.Self-affine tiling via substitution dynamical systems and Rauzy fractals. Pacific J. Math. 206, 2 (2002), 465–485. Zbl1048.37015MR1926787
  41. Solomyak, B.Substitutions, adic transformations, and beta-expansions. In Symbolic dynamics and its applications (New Haven, CT, 1991). Vol. 135 of Contemp. Math. Amer. Math. Soc., Providence, RI, 1992, pp. 361–372. Zbl0771.28013MR1185103
  42. Thurston, W.Groups, tilings and finite state automata. AMS Colloquium Lecture Notes, 1989. 
  43. Vince, A.Digit tiling of euclidean space. In Directions in Mathematical Quasicrystals (Providence, RI, 2000), Amer. Math. Soc., pp. 329–370. Zbl0972.52012MR1798999

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.