Unimodular Pisot substitutions and their associated tiles
- [1] Institut für Mathematik und Angewandte Geometrie Abteilung für Mathematik und Statistik Montanuniversität Leoben Franz-Josef-Strasse 18 A-8700 LEOBEN, AUSTRIA
Journal de Théorie des Nombres de Bordeaux (2006)
- Volume: 18, Issue: 2, page 487-536
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topThuswaldner, Jörg M.. "Unimodular Pisot substitutions and their associated tiles." Journal de Théorie des Nombres de Bordeaux 18.2 (2006): 487-536. <http://eudml.org/doc/249630>.
@article{Thuswaldner2006,
abstract = {Let $\sigma $ be a unimodular Pisot substitution over a $d$ letter alphabet and let $X_1,\ldots , X_d$ be the associated Rauzy fractals. In the present paper we want to investigate the boundaries $\partial X_i$ ($1\le i\le d$) of these fractals. To this matter we define a certain graph, the so-called contact graph$\mathcal\{C\}$ of $\sigma $. If $\sigma $ satisfies a combinatorial condition called the super coincidence condition the contact graph can be used to set up a self-affine graph directed system whose attractors are certain pieces of the boundaries $\partial X_1,\ldots , \partial X_d$. From this graph directed system we derive an easy formula for the fractal dimension of $\partial X_i$ in which eigenvalues of the adjacency matrix of $\mathcal\{C\}$ occur.An advantage of the contact graph is its relatively simple structure, which makes it possible to construct it for large classes of substitutions at once. In the present paper we construct the contact graph explicitly for a class of unimodular Pisot substitutions related to $\beta $-expansions with respect to cubic Pisot units. In particular, we deal with substitutions of the form\begin\{equation*\} \sigma (1) = \underbrace\{1\ldots 1\}\_\{b\,\hbox\{times\}\}2, \quad \sigma (2) =\underbrace\{1\ldots 1\}\_\{a\,\hbox\{times\}\}3, \quad \sigma (3) =1 \end\{equation*\}where $b\ge a\ge 1$. It is well known that these substitutions satisfy the above mentioned super coincidence condition. Thus we can give an explicit formula for the fractal dimension of the boundaries of the Rauzy fractals related to these substitutions.},
affiliation = {Institut für Mathematik und Angewandte Geometrie Abteilung für Mathematik und Statistik Montanuniversität Leoben Franz-Josef-Strasse 18 A-8700 LEOBEN, AUSTRIA},
author = {Thuswaldner, Jörg M.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {unimodular Pisot substitution; tiles; Pisot-Vijayaraghavan number; Rauzy fractals; contact graph},
language = {eng},
number = {2},
pages = {487-536},
publisher = {Université Bordeaux 1},
title = {Unimodular Pisot substitutions and their associated tiles},
url = {http://eudml.org/doc/249630},
volume = {18},
year = {2006},
}
TY - JOUR
AU - Thuswaldner, Jörg M.
TI - Unimodular Pisot substitutions and their associated tiles
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2006
PB - Université Bordeaux 1
VL - 18
IS - 2
SP - 487
EP - 536
AB - Let $\sigma $ be a unimodular Pisot substitution over a $d$ letter alphabet and let $X_1,\ldots , X_d$ be the associated Rauzy fractals. In the present paper we want to investigate the boundaries $\partial X_i$ ($1\le i\le d$) of these fractals. To this matter we define a certain graph, the so-called contact graph$\mathcal{C}$ of $\sigma $. If $\sigma $ satisfies a combinatorial condition called the super coincidence condition the contact graph can be used to set up a self-affine graph directed system whose attractors are certain pieces of the boundaries $\partial X_1,\ldots , \partial X_d$. From this graph directed system we derive an easy formula for the fractal dimension of $\partial X_i$ in which eigenvalues of the adjacency matrix of $\mathcal{C}$ occur.An advantage of the contact graph is its relatively simple structure, which makes it possible to construct it for large classes of substitutions at once. In the present paper we construct the contact graph explicitly for a class of unimodular Pisot substitutions related to $\beta $-expansions with respect to cubic Pisot units. In particular, we deal with substitutions of the form\begin{equation*} \sigma (1) = \underbrace{1\ldots 1}_{b\,\hbox{times}}2, \quad \sigma (2) =\underbrace{1\ldots 1}_{a\,\hbox{times}}3, \quad \sigma (3) =1 \end{equation*}where $b\ge a\ge 1$. It is well known that these substitutions satisfy the above mentioned super coincidence condition. Thus we can give an explicit formula for the fractal dimension of the boundaries of the Rauzy fractals related to these substitutions.
LA - eng
KW - unimodular Pisot substitution; tiles; Pisot-Vijayaraghavan number; Rauzy fractals; contact graph
UR - http://eudml.org/doc/249630
ER -
References
top- Akiyama, S.Self affine tilings and Pisot numeration systems. In Number Theory and its Applications (1999), K. Győry and S. Kanemitsu, Eds., Kluwer, pp. 1–17. Zbl0999.11065MR1738803
- Akiyama, S.On the boundary of self affine tilings generated by Pisot numbers. J. Math. Soc. Japan 54, 2 (2002), 283–308. Zbl1032.11033MR1883519
- Akiyama, S., Sadahiro, T.A self-similar tiling generated by the minimal Pisot number. Acta Math. Info. Univ. Ostraviensis 6 (1998), 9–26. Zbl1024.11066MR1822510
- Arnoux, P., Berthé, V., Ei, H., Ito, S.Tilings, quasicrystals, discrete planes, generalized substitutions, and multidimensional continued fractions. In Discrete models: combinatorics, computation, and geometry (Paris, 2001), Discrete Math. Theor. Comput. Sci. Proc., AA. Maison Inform. Math. Discrèt. (MIMD), Paris, 2001, pp. 059–078 (electronic). Zbl1017.68147MR1888763
- Arnoux, P., Berthé, V. Siegel, A.Two-dimensional iterated morphisms and discrete planes. Theoret. Comput. Sci. 319, 1-3 (2004), 145–176. Zbl1068.37004MR2074952
- Arnoux, P. Ito, S.Pisot substitutions and Rauzy fractals. Bull. Belg. Math. Soc. Simon Stevin 8, 2 (2001), 181–207. Journées Montoises d’Informatique Théorique (Marne-la-Vallée, 2000). Zbl1007.37001MR1838930
- Barge, M. Diamond, B.Coincidence for substitutions of Pisot type. Bull. Soc. Math. France 130, 4 (2002), 619–626. Zbl1028.37008MR1947456
- Barge, M. Kwapisz, J.Geometric theory of unimodular Pisot substitutions. Preprint. Zbl1152.37011
- Berthé, V. Siegel, A.Purely periodic beta-expansions in the Pisot non-unit case. Preprint. Zbl1197.11139
- Berthé, V. Siegel, A.Tilings associated with beta-numeration and substitutions. Integers 5 (2005), no. 3, A2, (electronic). Zbl1139.37008MR2191748
- Canterini, V. Siegel, A.Automate des préfixes-suffixes associé à une substitution primitive. J. Théor. Nombres Bordeaux 13, 2 (2001), 353–369. Zbl1071.37011MR1879663
- Canterini, V. Siegel, A.Geometric representation of substitutions of Pisot type. Trans. Amer. Math. Soc. 353, 12 (2001), 5121–5144 (electronic). Zbl1142.37302MR1852097
- Deliu, A., Geronimo, J., Shonkwiler, R. Hardin, D.Dimension associated with recurrent self similar sets. Math. Proc. Camb. Philos. Soc. 110 (1991), 327–336. Zbl0742.28002MR1113431
- Dumont, J. M. Thomas, A.Digital sum moments and substitutions. Acta Arith. 64 (1993), 205–225. Zbl0774.11041MR1225425
- Falconer, K. J.The Hausdorff dimension of self-affine fractals. Math. Proc. Camb. Phil. Soc. 103 (1988), 339–350. Zbl0642.28005MR923687
- Falconer, K. J. Fractal Geometry. John Wiley and Sons, Chichester, 1990. Zbl0689.28003MR1102677
- Falconer, K. J.The dimension of self-affine fractals II. Math. Proc. Camb. Phil. Soc. 111 (1992), 169–179. Zbl0797.28004MR1131488
- Falconer, K. J. Techniques in Fractal Geometry. John Wiley and Sons, Chichester, New York, Weinheim, Brisbane, Singapore, Toronto, 1997. Zbl0869.28003MR1449135
- Feng, D.-J., Furukado, M., Ito, S. Wu, J.Pisot substitutions and the Hausdorff dimension of boundaries of atomic surfaces. Tsukuba J. Math. 30 (2006), 195–224. Zbl1130.37318MR2248292
- Fogg, N. P. Substitutions in dynamics, arithmetics and combinatorics. Vol. 1794 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002. Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel. Zbl1014.11015MR1970385
- Frougny, C. Solomyak, B.Finite beta-expansions. Ergodic Theory Dynam. Systems 12, 4 (1992), 713–723. Zbl0814.68065MR1200339
- Gröchenig, K. Haas, A.Self-similar lattice tilings. J. Fourier Anal. Appl. 1 (1994), 131–170. Zbl0978.28500MR1348740
- Holton, C. Zamboni, L. Q.Geometric realizations of substitutions. Bull. Soc. Math. France 126, 2 (1998), 149–179. Zbl0931.11004MR1675970
- Ito, S. Kimura, M.On Rauzy fractal. Japan J. Indust. Appl. Math. 8, 3 (1991), 461–486. Zbl0734.28010MR1137652
- Ito, S. Rao, H.Atomic surfaces, Tilings and coincidence I. Irreducible case. Israel J. Math., to appear. Zbl1143.37013MR2254640
- Ito, S. Sano, Y.Substitutions, atomic surfaces, and periodic beta expansions. In Analytic number theory (Beijing/Kyoto, 1999), vol. 6 of Dev. Math. Kluwer Acad. Publ., Dordrecht, 2002, pp. 183–194. Zbl1022.11002MR1901982
- Lind, D. Marcus, B. An introduction to symbolic dynamics and coding. Cambridge University Press, Cambridge, 1995. Zbl1106.37301MR1369092
- Mauldin, R. D. Williams, S. C.Hausdorff dimension in graph directed constructions. Trans. Amer. Math. Soc. 309 (1988), 811–829. Zbl0706.28007MR961615
- Messaoudi, A.Propriétés arithmétiques et dynamiques du fractal de Rauzy. J. Théor. Nombres Bordeaux 10, 1 (1998), 135–162. Zbl0918.11048MR1827290
- Messaoudi, A.Frontière du fractal de Rauzy et système de numération complexe. Acta Arith. 95, 3 (2000), 195–224. Zbl0968.28005MR1793161
- Mossé, B.Recognizability of substitutions and complexity of automatic sequences. Bull. Soc. Math. Fr. 124, 2 (1996), 329–346. Zbl0855.68072MR1414542
- Parry, W.On the -expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960), 401–416. Zbl0099.28103MR142719
- Queffélec, M. Substitution dynamical systems—spectral analysis. Vol. 1294 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1987. Zbl0642.28013
- Rauzy, G.Nombres algébriques et substitutions. Bull. Soc. Math. France 110, 2 (1982), 147–178. Zbl0522.10032MR667748
- Sano, Y., Arnoux, P. Ito, S.Higher dimensional extensions of substitutions and their dual maps. J. Anal. Math. 83 (2001), 183–206. Zbl0987.11013MR1828491
- Scheicher, K. Thuswaldner, J. M.Canonical number systems, counting automata and fractals. Math. Proc. Cambridge Philos. Soc. 133, 1 (2002), 163–182. Zbl1001.68070MR1900260
- Scheicher, K. Thuswaldner, J. M.Neighbours of self-affine tiles in lattice tilings. In Proceedings of the Conference “Fractals in Graz” (2002), P. Grabner and W. Woess, Eds., pp. 241–262. Zbl1040.52013MR2091708
- Siegel, A.Représentation des systèmes dynamiques substitutifs non unimodulaires. Ergodic Theory Dynam. Systems 23, 4 (2003), 1247–1273. Zbl1052.37009MR1997975
- Siegel, A.Pure discrete spectrum dynamical system and periodic tiling associated with a substitution. Ann. Inst. Fourier (Grenoble) 54, 2 (2004), 341–381. Zbl1083.37009MR2073838
- Sirvent, V. F. Wang, Y.Self-affine tiling via substitution dynamical systems and Rauzy fractals. Pacific J. Math. 206, 2 (2002), 465–485. Zbl1048.37015MR1926787
- Solomyak, B.Substitutions, adic transformations, and beta-expansions. In Symbolic dynamics and its applications (New Haven, CT, 1991). Vol. 135 of Contemp. Math. Amer. Math. Soc., Providence, RI, 1992, pp. 361–372. Zbl0771.28013MR1185103
- Thurston, W.Groups, tilings and finite state automata. AMS Colloquium Lecture Notes, 1989.
- Vince, A.Digit tiling of euclidean space. In Directions in Mathematical Quasicrystals (Providence, RI, 2000), Amer. Math. Soc., pp. 329–370. Zbl0972.52012MR1798999
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.