Relation between the Farrell-Jones conjectures in algebraic and hermitian K -theory

Naoufel Battikh[1]

  • [1] Institut préparatoire aux études d’ingénieurs de Nabeul Campus universitaire Merazka, 8000 Nabeul (Tunisie)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 1, page 197-207
  • ISSN: 0373-0956

Abstract

top
We prove that if the Farrell-Jones conjecture for algebraic K -theory is true then the same conjecture for hermitian K -theory is equivalent to the fact that it exists p Z such that the assembly map is an isomorphism in degrees p and p + 1 .

How to cite

top

Battikh, Naoufel. "Relation entre les conjectures de Farrell-Jones en $K$-théories algébrique et hermitienne." Annales de l’institut Fourier 57.1 (2007): 197-207. <http://eudml.org/doc/10218>.

@article{Battikh2007,
abstract = {On montre que si la conjecture de Farrell-Jones en $K$-théorie algébrique est vérifiée alors celle de la $K$-théorie hermitienne est équivalente à l’existence d’un entier $p\in Z$ tel que “assembly map” soit un isomorphisme en degré $p$ et $p+1$.},
affiliation = {Institut préparatoire aux études d’ingénieurs de Nabeul Campus universitaire Merazka, 8000 Nabeul (Tunisie)},
author = {Battikh, Naoufel},
journal = {Annales de l’institut Fourier},
keywords = {Algebraic $K$-theory; hermitian $K$-theory; Farrell-Jones conjectures},
language = {fre},
number = {1},
pages = {197-207},
publisher = {Association des Annales de l’institut Fourier},
title = {Relation entre les conjectures de Farrell-Jones en $K$-théories algébrique et hermitienne},
url = {http://eudml.org/doc/10218},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Battikh, Naoufel
TI - Relation entre les conjectures de Farrell-Jones en $K$-théories algébrique et hermitienne
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 1
SP - 197
EP - 207
AB - On montre que si la conjecture de Farrell-Jones en $K$-théorie algébrique est vérifiée alors celle de la $K$-théorie hermitienne est équivalente à l’existence d’un entier $p\in Z$ tel que “assembly map” soit un isomorphisme en degré $p$ et $p+1$.
LA - fre
KW - Algebraic $K$-theory; hermitian $K$-theory; Farrell-Jones conjectures
UR - http://eudml.org/doc/10218
ER -

References

top
  1. A. Bartels, H. Reich, On the Farrell-Jones conjectures for higher algebraic K -theory, (2003) Zbl1073.19002
  2. F. T. Farrell, L. Jones, Isomorphism conjectures in algebraic K -theory, J. Amer, Math. Soc. 6 (1993), 249-297 Zbl0798.57018MR1179537
  3. A. Heller H. Bass, R. G. Swan, The whitehead group of polynomial extension, Inst. hautes études sci. 22 (1964), 61-79 Zbl0248.18026MR174605
  4. W. C. Hsiang, Borel’s conjecture, Novikov’s conjecture and the K -theoritic analogue, (1989), World scientific book, Singapour Zbl0744.57018MR1119074
  5. M. Karoubi, Le théorème fondamental de la K -théorie hermitienne, Annals of mathematics 112 (1980), 259-282 Zbl0483.18008MR592292
  6. J.-L. Loday, K -théorie algébrique et représentation de groupes, Ann. Sci. Ecole Normale Sup. Sér. 4 9 (1976), 309-377 Zbl0362.18014MR447373
  7. G. W. Whitehead, Generalised homology theories, Trans. A. M. S 102 (1962), 227-283 Zbl0124.38302MR137117

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.