Finite determinacy of dicritical singularities in
Gabriel Calsamiglia-Mendlewicz[1]
- [1] Universidade Federal Fluminense Departamento de Matemática Aplicada Rua Mário Santos Braga S/N 24020-140 Niterói Rio de Janeiro (Brasil)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 2, page 673-691
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCalsamiglia-Mendlewicz, Gabriel. "Finite determinacy of dicritical singularities in $(\mathbb{C}^2,0)$." Annales de l’institut Fourier 57.2 (2007): 673-691. <http://eudml.org/doc/10235>.
@article{Calsamiglia2007,
abstract = {For germs of singularities of holomorphic foliations in $(\mathbb\{C\}^2,0)$ which are regular after one blowing-up we show that there exists a functional analytic invariant (the transverse structure to the exceptional divisor) and a finite number of numerical parameters that allow us to decide whether two such singularities are analytically equivalent. As a result we prove a formal-analytic rigidity theorem for this kind of singularities.},
affiliation = {Universidade Federal Fluminense Departamento de Matemática Aplicada Rua Mário Santos Braga S/N 24020-140 Niterói Rio de Janeiro (Brasil)},
author = {Calsamiglia-Mendlewicz, Gabriel},
journal = {Annales de l’institut Fourier},
keywords = {Dicritical singularities; holomorphic singular foliations; foliations; dicritical singularities, topological classification of germs of foliations; analytic invariants of germs of foliations; finite determinacy of germs of foliations},
language = {eng},
number = {2},
pages = {673-691},
publisher = {Association des Annales de l’institut Fourier},
title = {Finite determinacy of dicritical singularities in $(\mathbb\{C\}^2,0)$},
url = {http://eudml.org/doc/10235},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Calsamiglia-Mendlewicz, Gabriel
TI - Finite determinacy of dicritical singularities in $(\mathbb{C}^2,0)$
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 2
SP - 673
EP - 691
AB - For germs of singularities of holomorphic foliations in $(\mathbb{C}^2,0)$ which are regular after one blowing-up we show that there exists a functional analytic invariant (the transverse structure to the exceptional divisor) and a finite number of numerical parameters that allow us to decide whether two such singularities are analytically equivalent. As a result we prove a formal-analytic rigidity theorem for this kind of singularities.
LA - eng
KW - Dicritical singularities; holomorphic singular foliations; foliations; dicritical singularities, topological classification of germs of foliations; analytic invariants of germs of foliations; finite determinacy of germs of foliations
UR - http://eudml.org/doc/10235
ER -
References
top- G. Calsamiglia, Singularidades Dicríticas e Vizinhanças Folheadas de Superfícies de Riemann, (2005)
- C. Camacho, H. Movasati, P. Sad, Fibred neighbourhoods of curves in surfaces, J. Geom. Anal. 13 (2003), 55-66 Zbl1036.32009MR1967036
- C. Camacho, P. Sad, Invariant varieties through holomorphic vector fields, Ann. Math. 115 (1982), 579-595 Zbl0503.32007MR657239
- C. Camacho, P. Sad, Pontos singulares de equações diferenciais analíticas, Colóquio Brasileiro de Matemática (1987), IMPA MR953780
- H. Cartan, Sur les fonctions de deux variables complexes, Bull. Sci. Math. 54 (1930), 99-116 Zbl56.0981.04
- D. Cerveau, J.F. Mattei, Formes intégrables holomorphes singulières, Astérisque 97 (1982) Zbl0545.32006MR704017
- M. Klughertz, Feuilletages holomorphes à singularité isolée ayant une infinité de courbes intégrales, (1988)
- J.F. Mattei, Modules de feuilletages holomorphes singuliers. I. Équisingularité, Invent. Math. 103 (1991), 297-325 Zbl0709.32025MR1085109
- J.F. Mattei, R. Moussu, Holonomie et intégrales premières, Ann. Sci. École Norm. Sup. (4) 13 (1980), 469-523 Zbl0458.32005MR608290
- Ortiz-Bobadilla, Rosales-Gonzalez, Voronin, Rigidity theorems for generic holomorphic germs of dicritic foliations and vector fields in , Moscow Math. J. 5 (2005), 171-206 Zbl1091.32012MR2153473
- W. Rudin, Function theory in the unit ball of , Grundlehren der Mathematischen Wissenschaften 241 (1980), Springer-Verlag, New York-Berlin Zbl0495.32001MR601594
- P. Sad, R. Meziani, Singularités nilpotentes et intégrales premières
- M. Suzuki, Sur les intégrales premières de certains feuilletages analytiques complexes. Fonctions de plusieurs variables complexes, III, Lecture Notes in Math., 670 394 (1978), 53-79, Springer, Berlin Zbl0391.32017MR521913
- B. Teissier, Singularity theory (Trieste, 1991), (1995), 866-893, World Sci. Publishing, River Edge, NJ Zbl0943.14011MR1378433
- O. Zariski, Le problème des modules pour les branches planes, (1975), Centre de Math. de l’École Polytechnique Zbl0317.14004MR414561
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.