Page 1 Next

Displaying 1 – 20 of 67

Showing per page

A Fatou-Julia decomposition of transversally holomorphic foliations

Taro Asuke (2010)

Annales de l’institut Fourier

A Fatou-Julia decomposition of transversally holomorphic foliations of complex codimension one was given by Ghys, Gomez-Mont and Saludes. In this paper, we propose another decomposition in terms of normal families. Two decompositions have common properties as well as certain differences. It will be shown that the Fatou sets in our sense always contain the Fatou sets in the sense of Ghys, Gomez-Mont and Saludes and the inclusion is strict in some examples. This property is important when discussing...

A KAM phenomenon for singular holomorphic vector fields

Laurent Stolovitch (2005)

Publications Mathématiques de l'IHÉS

Let X be a germ of holomorphic vector field at the origin of Cn and vanishing there. We assume that X is a good perturbation of a “nondegenerate” singular completely integrable system. The latter is associated to a family of linear diagonal vector fields which is assumed to have nontrivial polynomial first integrals (they are generated by the so called “resonant monomials”). We show that X admits many invariant analytic subsets in a neighborhood of the origin. These are biholomorphic to the intersection...

A note on M. Soares’ bounds

Eduardo Esteves, Israel Vainsencher (2006)

Annales de l’institut Fourier

We give an intersection theoretic proof of M. Soares’ bounds for the Poincaré-Hopf index of an isolated singularity of a foliation of ℂℙ n .

Abelian integrals in holomorphic foliations.

Hossein Movasati (2004)

Revista Matemática Iberoamericana

The aim of this paper is to introduce the theory of Abelian integrals for holomorphic foliations in a complex manifold of dimension two. We will show the importance of Picard-Lefschetz theory and the classification of relatively exact 1-forms in this theory. As an application we identify some irreducible components of the space of holomorphic foliations of a fixed degree and with a center singularity in the projective space of dimension two. Also we calculate higher Melnikov functions under some...

Analytic invariants for the 1 : - 1 resonance

José Pedro Gaivão (2013)

Annales de l’institut Fourier

Associated to analytic Hamiltonian vector fields in 4 having an equilibrium point satisfying a non semisimple 1 : - 1 resonance, we construct two constants that are invariant with respect to local analytic symplectic changes of coordinates. These invariants vanish when the Hamiltonian is integrable. We also prove that one of these invariants does not vanish on an open and dense set.

Codimension one symplectic foliations.

Omegar Calvo, Vicente Muñoz, Francisco Presas (2005)

Revista Matemática Iberoamericana

We define the concept of symplectic foliation on a symplectic manifold and provide a method of constructing many examples, by using asymptotically holomorphic techniques.

Counting fixed points of a finitely generated subgroup of Aff [C].

F. Loray, M. Van Der Put, F. Recher (2004)

Publicacions Matemàtiques

Given a finitely generated subgroup G of the group of affine transformations acting on the complex line C, we are interested in the quotient Fix( G)/G. The purpose of this note is to establish when this quotient is finite and in this case its cardinality. We give an application to the qualitative study of polynomial planar vector fields at a neighborhood of a nilpotent singular point.

Deformations of Kähler manifolds with nonvanishing holomorphic vector fields

Jaume Amorós, Mònica Manjarín, Marcel Nicolau (2012)

Journal of the European Mathematical Society

We study compact Kähler manifolds X admitting nonvanishing holomorphic vector fields, extending the classical birational classification of projective varieties with tangent vector fields to a classification modulo deformation in the Kähler case, and biholomorphic in the projective case. We introduce and analyze a new class of 𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 , and show that they form a smooth subspace in the Kuranishi space of deformations of the complex structure of X . We extend Calabi’s theorem on the structure of compact Kähler...

Dynamics on Character Varieties and Malgrange irreducibility of Painlevé VI equation

Serge Cantat, Frank Loray (2009)

Annales de l’institut Fourier

We consider representations of the fundamental group of the four punctured sphere into SL ( 2 , ) . The moduli space of representations modulo conjugacy is the character variety. The Mapping Class Group of the punctured sphere acts on this space by symplectic polynomial automorphisms. This dynamical system can be interpreted as the monodromy of the Painlevé VI equation. Infinite bounded orbits are characterized: they come from SU ( 2 ) -representations. We prove the absence of invariant affine structure (and invariant...

Feuilletages singuliers de codimension un, groupoïde de Galois et intégrales premières

Guy Casale (2006)

Annales de l’institut Fourier

Dans cet article, nous étudions le groupoïde de Galois d’un germe de feuilletage holomorphe de codimension un. Nous associons à ce 𝒟 -groupoïde de Lie un invariant biméromorphe  : le rang transverse. Nous étudions en détails les relations entre cet invariant, l’existence de suites de Godbillon-Vey particulières et l’existence d’une intégrale première dans une extension fortement normale du corps différentiel des germes de fonctions méromorphes. Nous obtenons ainsi une généralisation d’un théorème...

Fibrations of compact Kähler manifolds in terms of cohomological properties of their fundamental groups

Ngaiming Mok (2000)

Annales de l'institut Fourier

We prove fibration theorems on compact Kähler manifolds with conditions on first cohomology groups of fundamental groups with respect to unitary representations into Hilbert spaces. If the fundamental group T of compact Kähler manifold X violates Property (T) of Kazhdan’s, then H 1 ( G a m m a , Φ ) 0 for some unitary representation Φ . By our earlier work there exists a d -closed holomorphic 1-form with coefficients twisted by some unitary representation Φ ' , possibly non-isomorphic to Φ . Taking norms we obtains a positive...

Finite determinacy of dicritical singularities in ( 2 , 0 )

Gabriel Calsamiglia-Mendlewicz (2007)

Annales de l’institut Fourier

For germs of singularities of holomorphic foliations in ( 2 , 0 ) which are regular after one blowing-up we show that there exists a functional analytic invariant (the transverse structure to the exceptional divisor) and a finite number of numerical parameters that allow us to decide whether two such singularities are analytically equivalent. As a result we prove a formal-analytic rigidity theorem for this kind of singularities.

Flat 3-webs of degree one on the projective plane

A. Beltrán, M. Falla Luza, D. Marín (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

The aim of this work is to study global 3 -webs with vanishing curvature. We wish to investigate degree 3 foliations for which their dual web is flat. The main ingredient is the Legendre transform, which is an avatar of classical projective duality in the realm of differential equations. We find a characterization of degree 3 foliations whose Legendre transform are webs with zero curvature.

Fonctions et feuilletages Levi-Flat. Étude locale

Dominique Cerveau, Paulo R. Sad (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We define the notion of CR equivalence for Levi-flat foliations and compare in a local setting these foliations to their linear parts. We study also the situation where the foliation has a first integral ; a condition is given so that this integral is the real part of a holomorphic function.

Currently displaying 1 – 20 of 67

Page 1 Next