Andreev’s Theorem on hyperbolic polyhedra
Roland K.W. Roeder[1]; John H. Hubbard[2]; William D. Dunbar[3]
- [1] Fields Institute 222 College St. Toronto ON M5T 3J1 (Canada)
- [2] Cornell University Mallot Hall Ithaca, NY 14853 (USA) and Université de Provence Centre de Mathématiques et d’Informatique 39 rue Joliot-Curie 13453 Marseille Cedex 13 (France)
- [3] Simon’s Rock College of Bard 84 Alford Road Great Barrington, MA 01230 (USA)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 3, page 825-882
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topRoeder, Roland K.W., Hubbard, John H., and Dunbar, William D.. "Andreev’s Theorem on hyperbolic polyhedra." Annales de l’institut Fourier 57.3 (2007): 825-882. <http://eudml.org/doc/10244>.
@article{Roeder2007,
abstract = {In 1970, E.M.Andreev published a classification of all three-dimensional compact hyperbolic polyhedra (other than tetrahedra) having non-obtuse dihedral angles. Given a combinatorial description of a polyhedron, $C$, Andreev’s Theorem provides five classes of linear inequalities, depending on $C$, for the dihedral angles, which are necessary and sufficient conditions for the existence of a hyperbolic polyhedron realizing $C$ with the assigned dihedral angles. Andreev’s Theorem also shows that the resulting polyhedron is unique, up to hyperbolic isometry.Andreev’s Theorem is both an interesting statement about the geometry of hyperbolic 3-dimensional space, as well as a fundamental tool used in the proof for Thurston’s Hyperbolization Theorem for 3-dimensional Haken manifolds.We correct a fundamental error in Andreev’s proof of existence and also provide a readable new proof of the other parts of the proof of Andreev’s Theorem, because Andreev’s paper has the reputation of being “unreadable”.},
affiliation = {Fields Institute 222 College St. Toronto ON M5T 3J1 (Canada); Cornell University Mallot Hall Ithaca, NY 14853 (USA) and Université de Provence Centre de Mathématiques et d’Informatique 39 rue Joliot-Curie 13453 Marseille Cedex 13 (France); Simon’s Rock College of Bard 84 Alford Road Great Barrington, MA 01230 (USA)},
author = {Roeder, Roland K.W., Hubbard, John H., Dunbar, William D.},
journal = {Annales de l’institut Fourier},
keywords = {Hyperbolic polyedra; dihedral angles; Andreev’s Theorem; Whitehead move; hyperbolic orbifold; hyperbolic polyhedra; dihederal angle; Andreev's Theorem},
language = {eng},
number = {3},
pages = {825-882},
publisher = {Association des Annales de l’institut Fourier},
title = {Andreev’s Theorem on hyperbolic polyhedra},
url = {http://eudml.org/doc/10244},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Roeder, Roland K.W.
AU - Hubbard, John H.
AU - Dunbar, William D.
TI - Andreev’s Theorem on hyperbolic polyhedra
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 3
SP - 825
EP - 882
AB - In 1970, E.M.Andreev published a classification of all three-dimensional compact hyperbolic polyhedra (other than tetrahedra) having non-obtuse dihedral angles. Given a combinatorial description of a polyhedron, $C$, Andreev’s Theorem provides five classes of linear inequalities, depending on $C$, for the dihedral angles, which are necessary and sufficient conditions for the existence of a hyperbolic polyhedron realizing $C$ with the assigned dihedral angles. Andreev’s Theorem also shows that the resulting polyhedron is unique, up to hyperbolic isometry.Andreev’s Theorem is both an interesting statement about the geometry of hyperbolic 3-dimensional space, as well as a fundamental tool used in the proof for Thurston’s Hyperbolization Theorem for 3-dimensional Haken manifolds.We correct a fundamental error in Andreev’s proof of existence and also provide a readable new proof of the other parts of the proof of Andreev’s Theorem, because Andreev’s paper has the reputation of being “unreadable”.
LA - eng
KW - Hyperbolic polyedra; dihedral angles; Andreev’s Theorem; Whitehead move; hyperbolic orbifold; hyperbolic polyhedra; dihederal angle; Andreev's Theorem
UR - http://eudml.org/doc/10244
ER -
References
top- M. Aigner, G. M. Ziegler, Proofs from The Book, third ed., (2004), Springer-Verlag, Berlin Zbl1038.00001MR2014872
- D. V. Alekseevskij, È. B. Vinberg, A. S. Solodovnikov, Geometry of spaces of constant curvature, Geometry, II, Encyclopaedia Math. Sci. 29 (1993), 1-138, Springer, Berlin Zbl0787.53001MR1254932
- E. M. Andreev, Convex polyhedra in Lobačevskiĭ spaces (english transl.), Math. USSR Sbornik 10 (1970), 413-440 Zbl0217.46801MR259734
- E. M. Andreev, Convex polyhedra in Lobačevskiĭ spaces (in Russian), Mat. Sb. 81 (1970), 445-478 Zbl0194.23202MR259734
- Xiliang Bao, Francis Bonahon, Hyperideal polyhedra in hyperbolic 3-space, Bull. Soc. Math. France 130 (2002), 457-491 Zbl1033.52009MR1943885
- Michel Boileau, Uniformisation en dimension trois, Séminaire Bourbaki 1998/99, exposé 855, Astérisque 266 (2000), 137-174 Zbl0942.57013MR1772673
- Michel Boileau, Joan Porti, Geometrization of 3-orbifolds of cyclic type, 272 (2001), SMF Zbl0971.57004MR1844891
- P. Bowers, K. Stephenson, A branched Andreev-Thurston theorem for circle packings of the sphere, Proc. London Math. Soc. (3) 73 (1996), 185-215 Zbl0856.51012MR1387087
- Bennett Chow, Feng Luo, Combinatorial Ricci flows on surfaces, J. Diff. Geom. 63 (2003), 97-129 Zbl1070.53040MR2015261
- Daryl Cooper, Craig D. Hodgson, Steven P. Kerckhoff, Three-dimensional orbifolds and cone-manifolds, with a postface by Sadayoshi Kojima, MSJ Memoirs 5 (2000), Math. Society of Japan, Tokyo Zbl0955.57014MR1778789
- Developed by The Geometry Center at the University of Minnesota in the late 1990’s, www.geomview.org
- Raquel Díaz, Non-convexity of the space of dihedral angles of hyperbolic polyhedra, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), 993-998 Zbl0898.52010MR1485617
- Raquel Díaz, A generalization of Andreev’s theorem, J. Math. Soc. Japan 58 (2006), 333-349 Zbl1097.51009MR2228562
- Régine Douady, Adrien Douady, Algèbre et théories galoisiennes, 2, (1979), CEDIC, Paris Zbl1076.12004MR595328
- François Guéritaud, On an elementary proof of Rivin’s characterization of convex ideal hyperbolic polyhedra by their dihedral angles, Geom. Dedicata 108 (2004), 111-124 Zbl1065.52008MR2112668
- C. D. Hodgson, Deduction of Andreev’s theorem from Rivin’s characterization of convex hyperbolic polyhedra, Topology 90 (1992), 185-193 Zbl0765.52013MR1184410
- Michael Kapovich, Hyperbolic manifolds and discrete groups, Progress in Math. 183 (2001), Birkhäuser Boston Zbl0958.57001MR1792613
- Elon Lages Lima, Fundamental groups and covering spaces (translated from Portuguese by Jonas Gomes), (2003), AK Peters Ltd., Natick, MA Zbl1029.55001MR2000701
- A. Marden, B. Rodin, On Thurston’s formulation and proof of Andreev’s Theorem, in Computational Methods and Function Theory, Lecture Notes in Math. 1435 (1990), 103-115, Springer-Verlag Zbl0717.52014MR1071766
- Jean-Pierre Otal, Thurston’s hyperbolization of Haken manifolds, Surveys in Differential Geometry, Cambridge, MA, 1996 III (1998), 77-194, Int. Press Zbl0997.57001MR1677888
- I. Rivin, C. D. Hodgson, A characterization of compact convex polyhedra in hyperbolic 3-space, Invent. Math. 111 (1993), 77-111 Zbl0784.52013MR1193599
- Igor Rivin, On geometry of convex ideal polyhedra in hyperbolic -space, Topology 32 (1993), 87-92 Zbl0784.52014MR1204408
- Igor Rivin, A characterization of ideal polyhedra in hyperbolic -space, Ann. of Math. (2) 143 (1996), 51-70 Zbl0874.52006MR1370757
- Igor Rivin, Combinatorial optimization in geometry, Adv. Appl. Math. 31 (2003), 242-271 Zbl1028.52006MR1985831
- Roland K. W. Roeder, Compact hyperbolic tetrahedra with non-obtuse dihedral angles, Publications Mathématiques 50 (2006), 211-227 Zbl1127.52010
- Roland K. W. Roeder, Le théorème d’Andreev sur polyèdres hyperboliques (in English), (May 2004)
- J.-M. Schlenker, Dihedral angles of convex polyhedra, Discrete Comput. Geom. 23 (2000), 409-417 Zbl0951.52006MR1744513
- Jean-Marc Schlenker, Métriques sur les polyèdres hyperboliques convexes, J. Differential Geom. 48 (1998), 323-405 Zbl0912.52008MR1630178
- Jean-Marc Schlenker, Hyperbolic manifolds with convex boundary, Invent. Math. 163 (2006), 109-169 Zbl1091.53019MR2208419
- W. P. Thurston, Geometry and topology of 3-manifolds, (1978-1979), Princeton University Lecture Notes
- William P. Thurston, Three-dimensional geometry and topology, 1, Princeton Mathematical Series 35 (1997), Princeton University Press Zbl0873.57001MR1435975
- È. B. Vinberg, Discrete groups generated by reflections in Lobačevskiĭ spaces, Mat. Sb. (N.S.) 72 (1967), 471-488 Zbl0166.16303MR207853
- È. B. Vinberg, Hyperbolic groups of reflections, Russian Math. Surveys 40 (1985), 31-75 Zbl0579.51015MR783604
- È. B. Vinberg, The volume of polyhedra on a sphere and in Lobachevsky space, Algebra and analysis (Kemerovo, 1988), Amer. Math. Soc. Transl. Ser. 2 148 (1991), 15-27, Amer. Math. Soc., Providence, RI Zbl0742.51019
- È. B. Vinberg, O. V. Shvartsman, Discrete groups of motions of spaces of constant curvature, in Geometry, II, Encyclopaedia Math. Sci. 29 (1993), 139-248, Springer, Berlin Zbl0787.22012MR1254933
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.