Andreev’s Theorem on hyperbolic polyhedra

Roland K.W. Roeder[1]; John H. Hubbard[2]; William D. Dunbar[3]

  • [1] Fields Institute 222 College St. Toronto ON M5T 3J1 (Canada)
  • [2] Cornell University Mallot Hall Ithaca, NY 14853 (USA) and Université de Provence Centre de Mathématiques et d’Informatique 39 rue Joliot-Curie 13453 Marseille Cedex 13 (France)
  • [3] Simon’s Rock College of Bard 84 Alford Road Great Barrington, MA 01230 (USA)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 3, page 825-882
  • ISSN: 0373-0956

Abstract

top
In 1970, E.M.Andreev published a classification of all three-dimensional compact hyperbolic polyhedra (other than tetrahedra) having non-obtuse dihedral angles. Given a combinatorial description of a polyhedron,  C , Andreev’s Theorem provides five classes of linear inequalities, depending on  C , for the dihedral angles, which are necessary and sufficient conditions for the existence of a hyperbolic polyhedron realizing C with the assigned dihedral angles. Andreev’s Theorem also shows that the resulting polyhedron is unique, up to hyperbolic isometry.Andreev’s Theorem is both an interesting statement about the geometry of hyperbolic 3-dimensional space, as well as a fundamental tool used in the proof for Thurston’s Hyperbolization Theorem for 3-dimensional Haken manifolds.We correct a fundamental error in Andreev’s proof of existence and also provide a readable new proof of the other parts of the proof of Andreev’s Theorem, because Andreev’s paper has the reputation of being “unreadable”.

How to cite

top

Roeder, Roland K.W., Hubbard, John H., and Dunbar, William D.. "Andreev’s Theorem on hyperbolic polyhedra." Annales de l’institut Fourier 57.3 (2007): 825-882. <http://eudml.org/doc/10244>.

@article{Roeder2007,
abstract = {In 1970, E.M.Andreev published a classification of all three-dimensional compact hyperbolic polyhedra (other than tetrahedra) having non-obtuse dihedral angles. Given a combinatorial description of a polyhedron, $C$, Andreev’s Theorem provides five classes of linear inequalities, depending on $C$, for the dihedral angles, which are necessary and sufficient conditions for the existence of a hyperbolic polyhedron realizing $C$ with the assigned dihedral angles. Andreev’s Theorem also shows that the resulting polyhedron is unique, up to hyperbolic isometry.Andreev’s Theorem is both an interesting statement about the geometry of hyperbolic 3-dimensional space, as well as a fundamental tool used in the proof for Thurston’s Hyperbolization Theorem for 3-dimensional Haken manifolds.We correct a fundamental error in Andreev’s proof of existence and also provide a readable new proof of the other parts of the proof of Andreev’s Theorem, because Andreev’s paper has the reputation of being “unreadable”.},
affiliation = {Fields Institute 222 College St. Toronto ON M5T 3J1 (Canada); Cornell University Mallot Hall Ithaca, NY 14853 (USA) and Université de Provence Centre de Mathématiques et d’Informatique 39 rue Joliot-Curie 13453 Marseille Cedex 13 (France); Simon’s Rock College of Bard 84 Alford Road Great Barrington, MA 01230 (USA)},
author = {Roeder, Roland K.W., Hubbard, John H., Dunbar, William D.},
journal = {Annales de l’institut Fourier},
keywords = {Hyperbolic polyedra; dihedral angles; Andreev’s Theorem; Whitehead move; hyperbolic orbifold; hyperbolic polyhedra; dihederal angle; Andreev's Theorem},
language = {eng},
number = {3},
pages = {825-882},
publisher = {Association des Annales de l’institut Fourier},
title = {Andreev’s Theorem on hyperbolic polyhedra},
url = {http://eudml.org/doc/10244},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Roeder, Roland K.W.
AU - Hubbard, John H.
AU - Dunbar, William D.
TI - Andreev’s Theorem on hyperbolic polyhedra
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 3
SP - 825
EP - 882
AB - In 1970, E.M.Andreev published a classification of all three-dimensional compact hyperbolic polyhedra (other than tetrahedra) having non-obtuse dihedral angles. Given a combinatorial description of a polyhedron, $C$, Andreev’s Theorem provides five classes of linear inequalities, depending on $C$, for the dihedral angles, which are necessary and sufficient conditions for the existence of a hyperbolic polyhedron realizing $C$ with the assigned dihedral angles. Andreev’s Theorem also shows that the resulting polyhedron is unique, up to hyperbolic isometry.Andreev’s Theorem is both an interesting statement about the geometry of hyperbolic 3-dimensional space, as well as a fundamental tool used in the proof for Thurston’s Hyperbolization Theorem for 3-dimensional Haken manifolds.We correct a fundamental error in Andreev’s proof of existence and also provide a readable new proof of the other parts of the proof of Andreev’s Theorem, because Andreev’s paper has the reputation of being “unreadable”.
LA - eng
KW - Hyperbolic polyedra; dihedral angles; Andreev’s Theorem; Whitehead move; hyperbolic orbifold; hyperbolic polyhedra; dihederal angle; Andreev's Theorem
UR - http://eudml.org/doc/10244
ER -

References

top
  1. M. Aigner, G. M. Ziegler, Proofs from The Book, third ed., (2004), Springer-Verlag, Berlin Zbl1038.00001MR2014872
  2. D. V. Alekseevskij, È. B. Vinberg, A. S. Solodovnikov, Geometry of spaces of constant curvature, Geometry, II, Encyclopaedia Math. Sci. 29 (1993), 1-138, Springer, Berlin Zbl0787.53001MR1254932
  3. E. M. Andreev, Convex polyhedra in Lobačevskiĭ spaces (english transl.), Math. USSR Sbornik 10 (1970), 413-440 Zbl0217.46801MR259734
  4. E. M. Andreev, Convex polyhedra in Lobačevskiĭ spaces (in Russian), Mat. Sb. 81 (1970), 445-478 Zbl0194.23202MR259734
  5. Xiliang Bao, Francis Bonahon, Hyperideal polyhedra in hyperbolic 3-space, Bull. Soc. Math. France 130 (2002), 457-491 Zbl1033.52009MR1943885
  6. Michel Boileau, Uniformisation en dimension trois, Séminaire Bourbaki 1998/99, exposé 855, Astérisque 266 (2000), 137-174 Zbl0942.57013MR1772673
  7. Michel Boileau, Joan Porti, Geometrization of 3-orbifolds of cyclic type, 272 (2001), SMF Zbl0971.57004MR1844891
  8. P. Bowers, K. Stephenson, A branched Andreev-Thurston theorem for circle packings of the sphere, Proc. London Math. Soc. (3) 73 (1996), 185-215 Zbl0856.51012MR1387087
  9. Bennett Chow, Feng Luo, Combinatorial Ricci flows on surfaces, J. Diff. Geom. 63 (2003), 97-129 Zbl1070.53040MR2015261
  10. Daryl Cooper, Craig D. Hodgson, Steven P. Kerckhoff, Three-dimensional orbifolds and cone-manifolds, with a postface by Sadayoshi Kojima, MSJ Memoirs 5 (2000), Math. Society of Japan, Tokyo Zbl0955.57014MR1778789
  11. Developed by The Geometry Center at the University of Minnesota in the late 1990’s, www.geomview.org 
  12. Raquel Díaz, Non-convexity of the space of dihedral angles of hyperbolic polyhedra, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), 993-998 Zbl0898.52010MR1485617
  13. Raquel Díaz, A generalization of Andreev’s theorem, J. Math. Soc. Japan 58 (2006), 333-349 Zbl1097.51009MR2228562
  14. Régine Douady, Adrien Douady, Algèbre et théories galoisiennes, 2, (1979), CEDIC, Paris Zbl1076.12004MR595328
  15. François Guéritaud, On an elementary proof of Rivin’s characterization of convex ideal hyperbolic polyhedra by their dihedral angles, Geom. Dedicata 108 (2004), 111-124 Zbl1065.52008MR2112668
  16. C. D. Hodgson, Deduction of Andreev’s theorem from Rivin’s characterization of convex hyperbolic polyhedra, Topology 90 (1992), 185-193 Zbl0765.52013MR1184410
  17. Michael Kapovich, Hyperbolic manifolds and discrete groups, Progress in Math. 183 (2001), Birkhäuser Boston Zbl0958.57001MR1792613
  18. Elon Lages Lima, Fundamental groups and covering spaces (translated from Portuguese by Jonas Gomes), (2003), AK Peters Ltd., Natick, MA Zbl1029.55001MR2000701
  19. A. Marden, B. Rodin, On Thurston’s formulation and proof of Andreev’s Theorem, in Computational Methods and Function Theory, Lecture Notes in Math. 1435 (1990), 103-115, Springer-Verlag Zbl0717.52014MR1071766
  20. Jean-Pierre Otal, Thurston’s hyperbolization of Haken manifolds, Surveys in Differential Geometry, Cambridge, MA, 1996 III (1998), 77-194, Int. Press Zbl0997.57001MR1677888
  21. I. Rivin, C. D. Hodgson, A characterization of compact convex polyhedra in hyperbolic 3-space, Invent. Math. 111 (1993), 77-111 Zbl0784.52013MR1193599
  22. Igor Rivin, On geometry of convex ideal polyhedra in hyperbolic 3 -space, Topology 32 (1993), 87-92 Zbl0784.52014MR1204408
  23. Igor Rivin, A characterization of ideal polyhedra in hyperbolic 3 -space, Ann. of Math. (2) 143 (1996), 51-70 Zbl0874.52006MR1370757
  24. Igor Rivin, Combinatorial optimization in geometry, Adv. Appl. Math. 31 (2003), 242-271 Zbl1028.52006MR1985831
  25. Roland K. W. Roeder, Compact hyperbolic tetrahedra with non-obtuse dihedral angles, Publications Mathématiques 50 (2006), 211-227 Zbl1127.52010
  26. Roland K. W. Roeder, Le théorème d’Andreev sur polyèdres hyperboliques (in English), (May 2004) 
  27. J.-M. Schlenker, Dihedral angles of convex polyhedra, Discrete Comput. Geom. 23 (2000), 409-417 Zbl0951.52006MR1744513
  28. Jean-Marc Schlenker, Métriques sur les polyèdres hyperboliques convexes, J. Differential Geom. 48 (1998), 323-405 Zbl0912.52008MR1630178
  29. Jean-Marc Schlenker, Hyperbolic manifolds with convex boundary, Invent. Math. 163 (2006), 109-169 Zbl1091.53019MR2208419
  30. W. P. Thurston, Geometry and topology of 3-manifolds, (1978-1979), Princeton University Lecture Notes 
  31. William P. Thurston, Three-dimensional geometry and topology, 1, Princeton Mathematical Series 35 (1997), Princeton University Press Zbl0873.57001MR1435975
  32. È. B. Vinberg, Discrete groups generated by reflections in Lobačevskiĭ spaces, Mat. Sb. (N.S.) 72 (1967), 471-488 Zbl0166.16303MR207853
  33. È. B. Vinberg, Hyperbolic groups of reflections, Russian Math. Surveys 40 (1985), 31-75 Zbl0579.51015MR783604
  34. È. B. Vinberg, The volume of polyhedra on a sphere and in Lobachevsky space, Algebra and analysis (Kemerovo, 1988), Amer. Math. Soc. Transl. Ser. 2 148 (1991), 15-27, Amer. Math. Soc., Providence, RI Zbl0742.51019
  35. È. B. Vinberg, O. V. Shvartsman, Discrete groups of motions of spaces of constant curvature, in Geometry, II, Encyclopaedia Math. Sci. 29 (1993), 139-248, Springer, Berlin Zbl0787.22012MR1254933

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.