Hyperideal polyhedra in hyperbolic 3-space
Bulletin de la Société Mathématique de France (2002)
- Volume: 130, Issue: 3, page 457-491
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topBao, Xiliang, and Bonahon, Francis. "Hyperideal polyhedra in hyperbolic 3-space." Bulletin de la Société Mathématique de France 130.3 (2002): 457-491. <http://eudml.org/doc/272331>.
@article{Bao2002,
abstract = {A hyperideal polyhedron is a non-compact polyhedron in the hyperbolic $3$-space $\mathbb \{H\}^3$ which, in the projective model for $\mathbb \{H\}^3\subset \mathbb \{RP\}^3$, is just the intersection of $\mathbb \{H\}^3$ with a projective polyhedron whose vertices are all outside $\mathbb \{H\}^3$ and whose edges all meet $\mathbb \{H\}^3$. We classify hyperideal polyhedra, up to isometries of $\mathbb \{H\}^3$, in terms of their combinatorial type and of their dihedral angles.},
author = {Bao, Xiliang, Bonahon, Francis},
journal = {Bulletin de la Société Mathématique de France},
keywords = {hyperbolic space; polyhedron; ideal polyhedron; hyperideal},
language = {eng},
number = {3},
pages = {457-491},
publisher = {Société mathématique de France},
title = {Hyperideal polyhedra in hyperbolic 3-space},
url = {http://eudml.org/doc/272331},
volume = {130},
year = {2002},
}
TY - JOUR
AU - Bao, Xiliang
AU - Bonahon, Francis
TI - Hyperideal polyhedra in hyperbolic 3-space
JO - Bulletin de la Société Mathématique de France
PY - 2002
PB - Société mathématique de France
VL - 130
IS - 3
SP - 457
EP - 491
AB - A hyperideal polyhedron is a non-compact polyhedron in the hyperbolic $3$-space $\mathbb {H}^3$ which, in the projective model for $\mathbb {H}^3\subset \mathbb {RP}^3$, is just the intersection of $\mathbb {H}^3$ with a projective polyhedron whose vertices are all outside $\mathbb {H}^3$ and whose edges all meet $\mathbb {H}^3$. We classify hyperideal polyhedra, up to isometries of $\mathbb {H}^3$, in terms of their combinatorial type and of their dihedral angles.
LA - eng
KW - hyperbolic space; polyhedron; ideal polyhedron; hyperideal
UR - http://eudml.org/doc/272331
ER -
References
top- [1] A. Alexandrow – Konvexe Polyeder, Akademie-Verlag, Berlin, 1958. MR92989
- [2] E. Andreev – « On Convex Polyhedra in Lobačevskiĭ Spaces (Russian) », Mat. Sbornik 81 (123) (1970), p. 445–478; English transl., Math. USSR Sb. t.10 (1970), pp.413–440. Zbl0217.46801MR259734
- [3] —, « On Convex Polyhedra of Finite Volume in Lobačevskiĭ Spaces (Russian) », Mat. Sbornik 83 (125) (1970), p. 256–260; English transl., Math. USSR Sb. t.12 (1970), pp.255–259. Zbl0252.52005MR273510
- [4] X. Bao – Hyperideal Polyhedra in Hyperbolic -Space, Doctoral dissertation, University of Southern California, Los Angeles, 1998. Zbl1033.52009MR2707528
- [5] A. Cauchy – « Sur les polygones et les polyèdres », J. École Polytechnique 9 (1813), p. 87–98.
- [6] H. Coxeter – « On Complexes with Transitive Groups of Automorphisms », Ann. of Math.35 (1934), p. 588–621. Zbl0010.01101JFM60.0898.02
- [7] P. Cromwell – Polyhedra, Cambridge University Press, 1997. Zbl0926.52014MR1458063
- [8] B. Grünbaum – Convex Polytopes, Interscience Publishers, John Wiley & Sons Inc., New York, 1967. Zbl0163.16603MR226496
- [9] J. van Lint & R. Wilson – A Course in Combinatorics, Cambridge University Press, 1992. Zbl0980.05001MR1207813
- [10] I. Rivin – « Euclidean Structures on Simplicial Surfaces and Hyperbolic Volume », Ann. of Math.139 (1994), p. 553–580. Zbl0823.52009MR1283870
- [11] —, « A Characterization of Ideal Polyhedra in Hyperbolic -Space », Ann. of Math.143 (1996), p. 51–70. Zbl0874.52006MR1370757
- [12] I. Rivin & C. Hodgson – « A Characterization of Compact Convex Polyhedra in Hyperbolic -Space », Invent. Math. 111 (1993), p. 77–111; Corrigendum, Invent. Math. t.117 (1994), pp.359. Zbl0798.52009MR1193599
- [13] J.-M. Schlenker – « Métriques sur les polyèdres hyperboliques convexes », J. Diff. Geom.48 (1998), p. 323–405. Zbl0912.52008MR1630178
- [14] —, « Dihedral Angles of Convex Polyhedra », Discrete Comp. Geom.23 (2000), p. 409–417. Zbl0951.52006MR1744513
- [15] J. Stoker – « Geometrical Problems Concerning Polyhedra in the Large », Comm. Pure Appl. Math.21 (1958), p. 119–168. Zbl0159.24301MR222765
- [16] W. Thurston – Three-Dimensional Geometry and Topology, (S. Levy, ed.), Princeton Math. Series, vol. 35, Princeton University Press, 1997. Zbl0873.57001MR1435975
- [17] È. Vinberg – « Discrete groups generated by reflections in Lobačevskiĭ spaces », Mat. Sbornik 72 (114) (1967), p. 471–488; English transl., Math. USSR Sb. t.1 (1967), pp.429–444; Correction, Mat. Sbornik t.73 (115) (1967), pp.303. Zbl0166.16303MR207853
Citations in EuDML Documents
top- Mathias Rousset, Sur la rigidité de polyèdres hyperboliques en dimension : cas de volume fini, cas hyperidéal, cas fuchsien
- Roland K.W. Roeder, John H. Hubbard, William D. Dunbar, Andreev’s Theorem on hyperbolic polyhedra
- Jean-Marc Schlenker, Des immersions isométriques de surfaces aux variétés hyperboliques à bord convexe
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.