Hyperideal polyhedra in hyperbolic 3-space

Xiliang Bao; Francis Bonahon

Bulletin de la Société Mathématique de France (2002)

  • Volume: 130, Issue: 3, page 457-491
  • ISSN: 0037-9484

Abstract

top
A hyperideal polyhedron is a non-compact polyhedron in the hyperbolic 3 -space 3 which, in the projective model for 3 ℝℙ 3 , is just the intersection of 3 with a projective polyhedron whose vertices are all outside 3 and whose edges all meet 3 . We classify hyperideal polyhedra, up to isometries of 3 , in terms of their combinatorial type and of their dihedral angles.

How to cite

top

Bao, Xiliang, and Bonahon, Francis. "Hyperideal polyhedra in hyperbolic 3-space." Bulletin de la Société Mathématique de France 130.3 (2002): 457-491. <http://eudml.org/doc/272331>.

@article{Bao2002,
abstract = {A hyperideal polyhedron is a non-compact polyhedron in the hyperbolic $3$-space $\mathbb \{H\}^3$ which, in the projective model for $\mathbb \{H\}^3\subset \mathbb \{RP\}^3$, is just the intersection of $\mathbb \{H\}^3$ with a projective polyhedron whose vertices are all outside $\mathbb \{H\}^3$ and whose edges all meet $\mathbb \{H\}^3$. We classify hyperideal polyhedra, up to isometries of $\mathbb \{H\}^3$, in terms of their combinatorial type and of their dihedral angles.},
author = {Bao, Xiliang, Bonahon, Francis},
journal = {Bulletin de la Société Mathématique de France},
keywords = {hyperbolic space; polyhedron; ideal polyhedron; hyperideal},
language = {eng},
number = {3},
pages = {457-491},
publisher = {Société mathématique de France},
title = {Hyperideal polyhedra in hyperbolic 3-space},
url = {http://eudml.org/doc/272331},
volume = {130},
year = {2002},
}

TY - JOUR
AU - Bao, Xiliang
AU - Bonahon, Francis
TI - Hyperideal polyhedra in hyperbolic 3-space
JO - Bulletin de la Société Mathématique de France
PY - 2002
PB - Société mathématique de France
VL - 130
IS - 3
SP - 457
EP - 491
AB - A hyperideal polyhedron is a non-compact polyhedron in the hyperbolic $3$-space $\mathbb {H}^3$ which, in the projective model for $\mathbb {H}^3\subset \mathbb {RP}^3$, is just the intersection of $\mathbb {H}^3$ with a projective polyhedron whose vertices are all outside $\mathbb {H}^3$ and whose edges all meet $\mathbb {H}^3$. We classify hyperideal polyhedra, up to isometries of $\mathbb {H}^3$, in terms of their combinatorial type and of their dihedral angles.
LA - eng
KW - hyperbolic space; polyhedron; ideal polyhedron; hyperideal
UR - http://eudml.org/doc/272331
ER -

References

top
  1. [1] A. Alexandrow – Konvexe Polyeder, Akademie-Verlag, Berlin, 1958. MR92989
  2. [2] E. Andreev – « On Convex Polyhedra in Lobačevskiĭ Spaces (Russian) », Mat. Sbornik 81 (123) (1970), p. 445–478; English transl., Math. USSR Sb. t.10 (1970), pp.413–440. Zbl0217.46801MR259734
  3. [3] —, « On Convex Polyhedra of Finite Volume in Lobačevskiĭ Spaces (Russian) », Mat. Sbornik 83 (125) (1970), p. 256–260; English transl., Math. USSR Sb. t.12 (1970), pp.255–259. Zbl0252.52005MR273510
  4. [4] X. Bao – Hyperideal Polyhedra in Hyperbolic 3 -Space, Doctoral dissertation, University of Southern California, Los Angeles, 1998. Zbl1033.52009MR2707528
  5. [5] A. Cauchy – « Sur les polygones et les polyèdres », J. École Polytechnique 9 (1813), p. 87–98. 
  6. [6] H. Coxeter – « On Complexes with Transitive Groups of Automorphisms », Ann. of Math.35 (1934), p. 588–621. Zbl0010.01101JFM60.0898.02
  7. [7] P. Cromwell – Polyhedra, Cambridge University Press, 1997. Zbl0926.52014MR1458063
  8. [8] B. Grünbaum – Convex Polytopes, Interscience Publishers, John Wiley & Sons Inc., New York, 1967. Zbl0163.16603MR226496
  9. [9] J. van Lint & R. Wilson – A Course in Combinatorics, Cambridge University Press, 1992. Zbl0980.05001MR1207813
  10. [10] I. Rivin – « Euclidean Structures on Simplicial Surfaces and Hyperbolic Volume », Ann. of Math.139 (1994), p. 553–580. Zbl0823.52009MR1283870
  11. [11] —, « A Characterization of Ideal Polyhedra in Hyperbolic 3 -Space », Ann. of Math.143 (1996), p. 51–70. Zbl0874.52006MR1370757
  12. [12] I. Rivin & C. Hodgson – « A Characterization of Compact Convex Polyhedra in Hyperbolic 3 -Space », Invent. Math. 111 (1993), p. 77–111; Corrigendum, Invent. Math. t.117 (1994), pp.359. Zbl0798.52009MR1193599
  13. [13] J.-M. Schlenker – « Métriques sur les polyèdres hyperboliques convexes », J. Diff. Geom.48 (1998), p. 323–405. Zbl0912.52008MR1630178
  14. [14] —, « Dihedral Angles of Convex Polyhedra », Discrete Comp. Geom.23 (2000), p. 409–417. Zbl0951.52006MR1744513
  15. [15] J. Stoker – « Geometrical Problems Concerning Polyhedra in the Large », Comm. Pure Appl. Math.21 (1958), p. 119–168. Zbl0159.24301MR222765
  16. [16] W. Thurston – Three-Dimensional Geometry and Topology, (S. Levy, ed.), Princeton Math. Series, vol. 35, Princeton University Press, 1997. Zbl0873.57001MR1435975
  17. [17] È. Vinberg – « Discrete groups generated by reflections in Lobačevskiĭ spaces », Mat. Sbornik 72 (114) (1967), p. 471–488; English transl., Math. USSR Sb. t.1 (1967), pp.429–444; Correction, Mat. Sbornik t.73 (115) (1967), pp.303. Zbl0166.16303MR207853

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.