Graphs having no quantum symmetry
Teodor Banica[1]; Julien Bichon[2]; Gaëtan Chenevier[3]
- [1] Université Toulouse 3 Département de mathématiques 118, route de Narbonne 31062 Toulouse (France)
- [2] Université de Pau Département de mathématiques 1, avenue de l’université 64000 Pau (France)
- [3] Université Paris 13 Département de mathématiques 99, avenue J-B. Clément 93430 Villetaneuse (France)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 3, page 955-971
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBanica, Teodor, Bichon, Julien, and Chenevier, Gaëtan. "Graphs having no quantum symmetry." Annales de l’institut Fourier 57.3 (2007): 955-971. <http://eudml.org/doc/10247>.
@article{Banica2007,
abstract = {We consider circulant graphs having $p$ vertices, with $p$ prime. To any such graph we associate a certain number $k$, that we call type of the graph. We prove that for $p\gg k$ the graph has no quantum symmetry, in the sense that the quantum automorphism group reduces to the classical automorphism group.},
affiliation = {Université Toulouse 3 Département de mathématiques 118, route de Narbonne 31062 Toulouse (France); Université de Pau Département de mathématiques 1, avenue de l’université 64000 Pau (France); Université Paris 13 Département de mathématiques 99, avenue J-B. Clément 93430 Villetaneuse (France)},
author = {Banica, Teodor, Bichon, Julien, Chenevier, Gaëtan},
journal = {Annales de l’institut Fourier},
keywords = {Quantum permutation group; circulant graph; quantum permutation group},
language = {eng},
number = {3},
pages = {955-971},
publisher = {Association des Annales de l’institut Fourier},
title = {Graphs having no quantum symmetry},
url = {http://eudml.org/doc/10247},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Banica, Teodor
AU - Bichon, Julien
AU - Chenevier, Gaëtan
TI - Graphs having no quantum symmetry
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 3
SP - 955
EP - 971
AB - We consider circulant graphs having $p$ vertices, with $p$ prime. To any such graph we associate a certain number $k$, that we call type of the graph. We prove that for $p\gg k$ the graph has no quantum symmetry, in the sense that the quantum automorphism group reduces to the classical automorphism group.
LA - eng
KW - Quantum permutation group; circulant graph; quantum permutation group
UR - http://eudml.org/doc/10247
ER -
References
top- B. Alspach, Point-symmetric graphs and digraphs of prime order and transitive permutation groups of prime degree,, J. Combinatorial Theory Ser. B 15 (1973), 12-17 Zbl0271.05117MR332553
- T. Banica, Symmetries of a generic coaction, Math. Ann. 314 (1999), 763-780 Zbl0928.46038MR1709109
- T. Banica, Quantum automorphism groups of homogeneous graphs, J. Funct. Anal. 224 (2005), 243-280 Zbl1088.46040MR2146039
- T. Banica, Quantum automorphism groups of small metric spaces, Pacific J. Math. 219 (2005), 27-51 Zbl1104.46039MR2174219
- T. Banica, J. Bichon, Free product formulae for quantum permutation groups Zbl1188.16029
- T. Banica, J. Bichon, Quantum automorphism groups of vertex-transitive graphs of order 11 Zbl1125.05049
- T. Banica, B. Collins, Integration over compact quantum groups Zbl1129.46058
- P. Biane, Representations of symmetric groups and free probability, Adv. Math. 138 (1998), 126-181 Zbl0927.20008MR1644993
- J. Bichon, Quantum automorphism groups of finite graphs, Proc. Amer. Math. Soc. 131 (2003), 665-673 Zbl1013.16032MR1937403
- J. Bichon, Free wreath product by the quantum permutation group, Alg. Rep. Theory 7 (2004), 343-362 Zbl1112.46313MR2096666
- D. Bisch, V. F. R. Jones, Singly generated planar algebras of small dimension, Duke Math. J. 101 (2000), 41-75 Zbl1075.46053MR1733737
- B. Collins, Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability, Int. Math. Res. Not. 17 (2003), 953-982 Zbl1049.60091MR1959915
- P. Di Francesco, Meander determinants, Comm. Math. Phys. 191 (1998), 543-583 Zbl0923.57002MR1608551
- E. Dobson, J. Morris, On automorphism groups of circulant digraphs of square-free order, Discrete Math. 299 (2005), 79-98 Zbl1073.05034MR2168697
- V. F. R. Jones, V. S. Sunder, Introduction to subfactors, LMS Lecture Notes 234 (1997), Cambridge University Press Zbl0903.46062MR1473221
- A. Klimyk, K. Schmüdgen, Quantum groups and their representations, Texts and Monographs in Physics (1997), Springer-Verlag, Berlin Zbl0891.17010MR1492989
- M. H. Klin, R. Pöschel, The König problem, the isomorphism problem for cyclic graphs and the method of Schur rings,, Colloq. Math. Soc. Janos Bolyai 25 (1981), 405-434 Zbl0478.05046MR642055
- S. Wang, Quantum symmetry groups of finite spaces, Comm. Math. Phys. 195 (1998), 195-211 Zbl1013.17008MR1637425
- L. C. Washington, Introduction to cyclotomic fields, GTM 83 (1982), Springer Zbl0484.12001MR718674
- D. Weingarten, Asymptotic behavior of group integrals in the limit of infinite rank, J. Math. Phys. 19 (1978), 999-1001 Zbl0388.28013MR471696
- S.L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613-665 Zbl0627.58034MR901157
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.