Graphs having no quantum symmetry

Teodor Banica[1]; Julien Bichon[2]; Gaëtan Chenevier[3]

  • [1] Université Toulouse 3 Département de mathématiques 118, route de Narbonne 31062 Toulouse (France)
  • [2] Université de Pau Département de mathématiques 1, avenue de l’université 64000 Pau (France)
  • [3] Université Paris 13 Département de mathématiques 99, avenue J-B. Clément 93430 Villetaneuse (France)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 3, page 955-971
  • ISSN: 0373-0956

Abstract

top
We consider circulant graphs having p vertices, with p prime. To any such graph we associate a certain number k , that we call type of the graph. We prove that for p k the graph has no quantum symmetry, in the sense that the quantum automorphism group reduces to the classical automorphism group.

How to cite

top

Banica, Teodor, Bichon, Julien, and Chenevier, Gaëtan. "Graphs having no quantum symmetry." Annales de l’institut Fourier 57.3 (2007): 955-971. <http://eudml.org/doc/10247>.

@article{Banica2007,
abstract = {We consider circulant graphs having $p$ vertices, with $p$ prime. To any such graph we associate a certain number $k$, that we call type of the graph. We prove that for $p\gg k$ the graph has no quantum symmetry, in the sense that the quantum automorphism group reduces to the classical automorphism group.},
affiliation = {Université Toulouse 3 Département de mathématiques 118, route de Narbonne 31062 Toulouse (France); Université de Pau Département de mathématiques 1, avenue de l’université 64000 Pau (France); Université Paris 13 Département de mathématiques 99, avenue J-B. Clément 93430 Villetaneuse (France)},
author = {Banica, Teodor, Bichon, Julien, Chenevier, Gaëtan},
journal = {Annales de l’institut Fourier},
keywords = {Quantum permutation group; circulant graph; quantum permutation group},
language = {eng},
number = {3},
pages = {955-971},
publisher = {Association des Annales de l’institut Fourier},
title = {Graphs having no quantum symmetry},
url = {http://eudml.org/doc/10247},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Banica, Teodor
AU - Bichon, Julien
AU - Chenevier, Gaëtan
TI - Graphs having no quantum symmetry
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 3
SP - 955
EP - 971
AB - We consider circulant graphs having $p$ vertices, with $p$ prime. To any such graph we associate a certain number $k$, that we call type of the graph. We prove that for $p\gg k$ the graph has no quantum symmetry, in the sense that the quantum automorphism group reduces to the classical automorphism group.
LA - eng
KW - Quantum permutation group; circulant graph; quantum permutation group
UR - http://eudml.org/doc/10247
ER -

References

top
  1. B. Alspach, Point-symmetric graphs and digraphs of prime order and transitive permutation groups of prime degree,, J. Combinatorial Theory Ser. B 15 (1973), 12-17 Zbl0271.05117MR332553
  2. T. Banica, Symmetries of a generic coaction, Math. Ann. 314 (1999), 763-780 Zbl0928.46038MR1709109
  3. T. Banica, Quantum automorphism groups of homogeneous graphs, J. Funct. Anal. 224 (2005), 243-280 Zbl1088.46040MR2146039
  4. T. Banica, Quantum automorphism groups of small metric spaces, Pacific J. Math. 219 (2005), 27-51 Zbl1104.46039MR2174219
  5. T. Banica, J. Bichon, Free product formulae for quantum permutation groups Zbl1188.16029
  6. T. Banica, J. Bichon, Quantum automorphism groups of vertex-transitive graphs of order 11 Zbl1125.05049
  7. T. Banica, B. Collins, Integration over compact quantum groups Zbl1129.46058
  8. P. Biane, Representations of symmetric groups and free probability, Adv. Math. 138 (1998), 126-181 Zbl0927.20008MR1644993
  9. J. Bichon, Quantum automorphism groups of finite graphs, Proc. Amer. Math. Soc. 131 (2003), 665-673 Zbl1013.16032MR1937403
  10. J. Bichon, Free wreath product by the quantum permutation group, Alg. Rep. Theory 7 (2004), 343-362 Zbl1112.46313MR2096666
  11. D. Bisch, V. F. R. Jones, Singly generated planar algebras of small dimension, Duke Math. J. 101 (2000), 41-75 Zbl1075.46053MR1733737
  12. B. Collins, Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability, Int. Math. Res. Not. 17 (2003), 953-982 Zbl1049.60091MR1959915
  13. P. Di Francesco, Meander determinants, Comm. Math. Phys. 191 (1998), 543-583 Zbl0923.57002MR1608551
  14. E. Dobson, J. Morris, On automorphism groups of circulant digraphs of square-free order, Discrete Math. 299 (2005), 79-98 Zbl1073.05034MR2168697
  15. V. F. R. Jones, V. S. Sunder, Introduction to subfactors, LMS Lecture Notes 234 (1997), Cambridge University Press Zbl0903.46062MR1473221
  16. A. Klimyk, K. Schmüdgen, Quantum groups and their representations, Texts and Monographs in Physics (1997), Springer-Verlag, Berlin Zbl0891.17010MR1492989
  17. M. H. Klin, R. Pöschel, The König problem, the isomorphism problem for cyclic graphs and the method of Schur rings,, Colloq. Math. Soc. Janos Bolyai 25 (1981), 405-434 Zbl0478.05046MR642055
  18. S. Wang, Quantum symmetry groups of finite spaces, Comm. Math. Phys. 195 (1998), 195-211 Zbl1013.17008MR1637425
  19. L. C. Washington, Introduction to cyclotomic fields, GTM 83 (1982), Springer Zbl0484.12001MR718674
  20. D. Weingarten, Asymptotic behavior of group integrals in the limit of infinite rank, J. Math. Phys. 19 (1978), 999-1001 Zbl0388.28013MR471696
  21. S.L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613-665 Zbl0627.58034MR901157

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.