On 3-dimensional CR manifolds and twistors

Olivier Biquard[1]

  • [1] Université Louis Pasteur et CNRS IRMA 7 rue René Descartes 67084 Strasbourg cedex (France)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 4, page 1161-1180
  • ISSN: 0373-0956

Abstract

top
We prove that any real analytic strictly pseudoconvex CR 3-manifold is the boundary (at infinity) of a unique selfdual Einstein metric defined in a neighborhood. The proof uses a new construction of twistor space based on singular rational curves.

How to cite

top

Biquard, Olivier. "Sur les variétés CR de dimension 3 et les twisteurs." Annales de l’institut Fourier 57.4 (2007): 1161-1180. <http://eudml.org/doc/10254>.

@article{Biquard2007,
abstract = {Nous montrons qu’une variété CR strictement pseudoconvexe, de dimension 3, analytique réelle, est le bord à l’infini d’une unique métrique d’Einstein autoduale, définie dans un petit voisinage. La preuve s’appuie sur une construction nouvelle d’espaces de twisteurs à l’aide de courbes rationnelles singulières.},
affiliation = {Université Louis Pasteur et CNRS IRMA 7 rue René Descartes 67084 Strasbourg cedex (France)},
author = {Biquard, Olivier},
journal = {Annales de l’institut Fourier},
keywords = {Twistors; selfdual metric; CR manifold},
language = {fre},
number = {4},
pages = {1161-1180},
publisher = {Association des Annales de l’institut Fourier},
title = {Sur les variétés CR de dimension 3 et les twisteurs},
url = {http://eudml.org/doc/10254},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Biquard, Olivier
TI - Sur les variétés CR de dimension 3 et les twisteurs
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 4
SP - 1161
EP - 1180
AB - Nous montrons qu’une variété CR strictement pseudoconvexe, de dimension 3, analytique réelle, est le bord à l’infini d’une unique métrique d’Einstein autoduale, définie dans un petit voisinage. La preuve s’appuie sur une construction nouvelle d’espaces de twisteurs à l’aide de courbes rationnelles singulières.
LA - fre
KW - Twistors; selfdual metric; CR manifold
UR - http://eudml.org/doc/10254
ER -

References

top
  1. M. F. Atiyah, N. J. Hitchin, I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1998), 425-461 Zbl0389.53011MR506229
  2. O. Biquard, Métriques d’Einstein asymptotiquement symétriques, Astérisque 265 (2000) Zbl0967.53030
  3. O. Biquard, Métriques autoduales sur la boule, Invent. math. 148 (2002), 545-607 Zbl1040.53061MR1908060
  4. O. Biquard, Autodual Einstein versus Kähler-Einstein, Geom. Funct. Anal. 15 (2005), 598-633 Zbl1082.53026MR2221145
  5. O. Biquard, Cauchy-Riemann 3-Manifolds and Einstein Fillings, Perspectives in Riemannian Geometry 40 (2006), 27-46, ApostolovV.V. Zbl1109.53047MR2251002
  6. D. M. J. Calderbank, M. A. Singer, Einstein metrics and complex singularities, Invent. Math. 156 (2004), 405-443 Zbl1061.53026MR2052611
  7. S. S. Chern, J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219-271 Zbl0302.32015MR425155
  8. O. Debarre, Higher-dimensional algebraic geometry, (1961), Springer-Verlag, New York Zbl0978.14001MR1841091
  9. C. L. Fefferman, Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains, Ann. of Math. (2) 103 (1976), 395-416 Zbl0322.32012MR407320
  10. B. Feix, Hyperkähler metrics on cotangent bundles, J. Reine Angew. Math. 532 (2001), 33-46 Zbl0976.53049MR1817502
  11. N. J. Hitchin, Twistor spaces, Einstein metrics and isomonodromic deformations, J. Reine Angew. Math. 42 (1995), 30-112 Zbl0861.53049MR1350695
  12. J. Kollár, Rational curves on algebraic varieties, (1996), Springer-Verlag, Berlin Zbl0877.14012MR1440180
  13. C. LeBrun, -space with a cosmological constant, Proc. Roy. Soc. London Ser. A 380 (1982), 171-185 Zbl0549.53042MR652038
  14. C. LeBrun, Twistor CR manifolds and three-dimensional conformal geometry, Trans. Amer. Math. Soc. 284 (1984), 601-616 Zbl0513.53006MR743735
  15. J. M. Lee, R. Melrose, Boundary behaviour of the complex Monge-Ampère equation, Acta Math. 148 (1982), 159-192 Zbl0496.35042MR666109

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.