Jacobian Nullwerte, periods and symmetric equations for hyperelliptic curves

Jordi Guàrdia[1]

  • [1] Escola Politècnica Superior d’Enginyeria de Vilanova i la Geltrú Departament de Matemàtica Aplicada IV Avinguda Víctor Balaguer s/n 08800 Vilanova i la Geltrú (Spain)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 4, page 1253-1283
  • ISSN: 0373-0956

Abstract

top
We propose a solution to the hyperelliptic Schottky problem, based on the use of Jacobian Nullwerte and symmetric models for hyperelliptic curves. Both ingredients are interesting on its own, since the first provide period matrices which can be geometrically described, and the second have remarkable arithmetic properties.

How to cite

top

Guàrdia, Jordi. "Jacobian Nullwerte, periods and symmetric equations for hyperelliptic curves." Annales de l’institut Fourier 57.4 (2007): 1253-1283. <http://eudml.org/doc/10257>.

@article{Guàrdia2007,
abstract = {We propose a solution to the hyperelliptic Schottky problem, based on the use of Jacobian Nullwerte and symmetric models for hyperelliptic curves. Both ingredients are interesting on its own, since the first provide period matrices which can be geometrically described, and the second have remarkable arithmetic properties.},
affiliation = {Escola Politècnica Superior d’Enginyeria de Vilanova i la Geltrú Departament de Matemàtica Aplicada IV Avinguda Víctor Balaguer s/n 08800 Vilanova i la Geltrú (Spain)},
author = {Guàrdia, Jordi},
journal = {Annales de l’institut Fourier},
keywords = {Hyperelliptic curves; periods; Jacobian Nullwerte; hyperelliptic curves},
language = {eng},
number = {4},
pages = {1253-1283},
publisher = {Association des Annales de l’institut Fourier},
title = {Jacobian Nullwerte, periods and symmetric equations for hyperelliptic curves},
url = {http://eudml.org/doc/10257},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Guàrdia, Jordi
TI - Jacobian Nullwerte, periods and symmetric equations for hyperelliptic curves
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 4
SP - 1253
EP - 1283
AB - We propose a solution to the hyperelliptic Schottky problem, based on the use of Jacobian Nullwerte and symmetric models for hyperelliptic curves. Both ingredients are interesting on its own, since the first provide period matrices which can be geometrically described, and the second have remarkable arithmetic properties.
LA - eng
KW - Hyperelliptic curves; periods; Jacobian Nullwerte; hyperelliptic curves
UR - http://eudml.org/doc/10257
ER -

References

top
  1. E. Arbarello, M. Cornalba, P. A. Griffiths, J. Harris, Geometry of algebraic curves. Vol. I, 267 (1985), Springer-Verlag, New York Zbl0559.14017MR770932
  2. Pilar Bayer, Jordi Guàrdia, Hyperbolic uniformization of the Fermat curves, Ramanjujan J. 12 (2006), 207-223 Zbl1142.11043MR2286246
  3. Modular functions of one variable. IV, (1975), BirchB. J.B. J., Berlin MR376533
  4. Gabriel Cardona, Jordi Quer, Field of moduli and field of definition for curves of genus 2, Computational aspects of algebraic curves 13 (2005), 71-83, World Sci. Publ., Hackensack, NJ Zbl1126.14031MR2181874
  5. J. E. Cremona, Algorithms for modular elliptic curves, (1992), Cambridge University Press, Cambridge Zbl0758.14042MR1201151
  6. Ferdinand Georg Frobenius, Über die constanten Factoren der Thetareihen, J. reine angew. Math. 98 (1885), 241-260 
  7. Josep González, Jordi Guàrdia, Victor Rotger, Abelian surfaces of GL 2 -type as Jacobians of curves, Acta Arith. 116 (2005), 263-287 Zbl1108.14032MR2114780
  8. Enrique González-Jiménez, Josep González, Modular curves of genus 2, Math. Comp. 72 (2003), 397-418 (electronic) Zbl1081.11042MR1933828
  9. Enrique González-Jiménez, Josep González, Jordi Guàrdia, Computations on modular Jacobian surfaces, Algorithmic number theory (Sydney, 2002) 2369 (2002), 189-197, Springer, Berlin Zbl1055.11038MR2041083
  10. Jordi Guàrdia, Jacobian nullwerte and algebraic equations, J. Algebra 253 (2002), 112-132 Zbl1054.14041MR1925010
  11. Jordi Guàrdia, Jacobi Thetanullwerte, periods of elliptic curves and minimal equations, Math. Res. Lett. 11 (2004), 115-123 Zbl1153.11311MR2046204
  12. Jordi Guàrdia, Eugenia Torres, Montserrat Vela, Stable models of elliptic curves, ring class fields, and complex multiplication, Algorithmic number theory 3076 (2004), 250-262, Springer, Berlin Zbl1125.11328MR2137358
  13. Jun-ichi Igusa, On Jacobi’s derivative formula and its generalizations, Amer. J. Math. 102 (1980), 409-446 Zbl0433.14033
  14. Jun-ichi Igusa, On the nullwerte of Jacobians of odd theta functions, Symposia Mathematica, Vol. XXIV (Sympos., INDAM, Rome, 1979) (1981), 83-95, Academic Press, London Zbl0458.14017MR619242
  15. Jun-ichi Igusa, Problems on abelian functions at the time of Poincaré and some at present, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 161-174 Zbl0484.14015MR640943
  16. Jun-ichi Igusa, Multiplicity one theorem and problems related to Jacobi’s formula, Amer. J. Math. 105 (1983), 157-187 Zbl0527.14037
  17. P. Lockhart, On the discriminant of a hyperelliptic curve, Trans. Amer. Math. Soc. 342 (1994), 729-752 Zbl0815.11031MR1195511
  18. MAGMA, http://magma.math.usyd.edu.au/magma/, (2004) 
  19. Henry McKean, Victor Moll, Elliptic curves, (1997), Cambridge University Press, Cambridge Zbl0895.11002MR1471703
  20. Jean-François Mestre, Construction de courbes de genre 2 à partir de leurs modules, Effective methods in algebraic geometry (Castiglioncello, 1990) 94 (1991), 313-334, Birkhäuser Boston, Boston, MA Zbl0752.14027MR1106431
  21. David Mumford, Tata lectures on theta. II, 43 (1984), Birkhäuser Boston Inc., Boston, MA Zbl0549.14014MR742776
  22. G. Rosenhain, Mémoire sur les fonctions de deux variables et à quatre périodes qui sont les inverses des intégrales ultra-elliptiques de la première classe, Mémoires des savants étrangers XI (1851), 362-468 
  23. Goro Shimura, Abelian varieties with complex multiplication and modular functions, 46 (1998), Princeton University Press, Princeton, NJ Zbl0908.11023MR1492449
  24. Joseph H. Silverman, The arithmetic of elliptic curves, 106 (1992), Springer-Verlag, New York Zbl0585.14026MR1329092
  25. Koichi Takase, A generalization of Rosenhain’s normal form for hyperelliptic curves with an application, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), 162-165 Zbl0924.14016
  26. J. Thomae, Beitrag zur Bestimmung von θ ( 0 , 0 , . . . , 0 ) durch die Klassenmoduln algebraischer Funktionen, J. reine angew. Math. 71 (1870), 201-222 
  27. Paul van Wamelen, Examples of genus two CM curves defined over the rationals, Math. Comp. 68 (1999), 307-320 Zbl0906.14025MR1609658
  28. Xiang Dong Wang, 2 -dimensional simple factors of J 0 ( N ) , Manuscripta Math. 87 (1995), 179-197 Zbl0846.14007MR1334940
  29. Hermann-Josef Weber, Hyperelliptic simple factors of J 0 ( N ) with dimension at least 3 , Experiment. Math. 6 (1997), 273-287 Zbl1115.14304MR1606908
  30. André Weil, Sur les périodes des intégrales abéliennes, Comm. Pure Appl. Math. 29 (1976), 813-819 Zbl0342.14020MR422164
  31. Annegret Weng, A class of hyperelliptic CM-curves of genus three, J. Ramanujan Math. Soc. 16 (2001), 339-372 Zbl1066.11028MR1877806

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.