Jacobian Nullwerte, periods and symmetric equations for hyperelliptic curves
- [1] Escola Politècnica Superior d’Enginyeria de Vilanova i la Geltrú Departament de Matemàtica Aplicada IV Avinguda Víctor Balaguer s/n 08800 Vilanova i la Geltrú (Spain)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 4, page 1253-1283
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGuàrdia, Jordi. "Jacobian Nullwerte, periods and symmetric equations for hyperelliptic curves." Annales de l’institut Fourier 57.4 (2007): 1253-1283. <http://eudml.org/doc/10257>.
@article{Guàrdia2007,
abstract = {We propose a solution to the hyperelliptic Schottky problem, based on the use of Jacobian Nullwerte and symmetric models for hyperelliptic curves. Both ingredients are interesting on its own, since the first provide period matrices which can be geometrically described, and the second have remarkable arithmetic properties.},
affiliation = {Escola Politècnica Superior d’Enginyeria de Vilanova i la Geltrú Departament de Matemàtica Aplicada IV Avinguda Víctor Balaguer s/n 08800 Vilanova i la Geltrú (Spain)},
author = {Guàrdia, Jordi},
journal = {Annales de l’institut Fourier},
keywords = {Hyperelliptic curves; periods; Jacobian Nullwerte; hyperelliptic curves},
language = {eng},
number = {4},
pages = {1253-1283},
publisher = {Association des Annales de l’institut Fourier},
title = {Jacobian Nullwerte, periods and symmetric equations for hyperelliptic curves},
url = {http://eudml.org/doc/10257},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Guàrdia, Jordi
TI - Jacobian Nullwerte, periods and symmetric equations for hyperelliptic curves
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 4
SP - 1253
EP - 1283
AB - We propose a solution to the hyperelliptic Schottky problem, based on the use of Jacobian Nullwerte and symmetric models for hyperelliptic curves. Both ingredients are interesting on its own, since the first provide period matrices which can be geometrically described, and the second have remarkable arithmetic properties.
LA - eng
KW - Hyperelliptic curves; periods; Jacobian Nullwerte; hyperelliptic curves
UR - http://eudml.org/doc/10257
ER -
References
top- E. Arbarello, M. Cornalba, P. A. Griffiths, J. Harris, Geometry of algebraic curves. Vol. I, 267 (1985), Springer-Verlag, New York Zbl0559.14017MR770932
- Pilar Bayer, Jordi Guàrdia, Hyperbolic uniformization of the Fermat curves, Ramanjujan J. 12 (2006), 207-223 Zbl1142.11043MR2286246
- Modular functions of one variable. IV, (1975), BirchB. J.B. J., Berlin MR376533
- Gabriel Cardona, Jordi Quer, Field of moduli and field of definition for curves of genus 2, Computational aspects of algebraic curves 13 (2005), 71-83, World Sci. Publ., Hackensack, NJ Zbl1126.14031MR2181874
- J. E. Cremona, Algorithms for modular elliptic curves, (1992), Cambridge University Press, Cambridge Zbl0758.14042MR1201151
- Ferdinand Georg Frobenius, Über die constanten Factoren der Thetareihen, J. reine angew. Math. 98 (1885), 241-260
- Josep González, Jordi Guàrdia, Victor Rotger, Abelian surfaces of -type as Jacobians of curves, Acta Arith. 116 (2005), 263-287 Zbl1108.14032MR2114780
- Enrique González-Jiménez, Josep González, Modular curves of genus 2, Math. Comp. 72 (2003), 397-418 (electronic) Zbl1081.11042MR1933828
- Enrique González-Jiménez, Josep González, Jordi Guàrdia, Computations on modular Jacobian surfaces, Algorithmic number theory (Sydney, 2002) 2369 (2002), 189-197, Springer, Berlin Zbl1055.11038MR2041083
- Jordi Guàrdia, Jacobian nullwerte and algebraic equations, J. Algebra 253 (2002), 112-132 Zbl1054.14041MR1925010
- Jordi Guàrdia, Jacobi Thetanullwerte, periods of elliptic curves and minimal equations, Math. Res. Lett. 11 (2004), 115-123 Zbl1153.11311MR2046204
- Jordi Guàrdia, Eugenia Torres, Montserrat Vela, Stable models of elliptic curves, ring class fields, and complex multiplication, Algorithmic number theory 3076 (2004), 250-262, Springer, Berlin Zbl1125.11328MR2137358
- Jun-ichi Igusa, On Jacobi’s derivative formula and its generalizations, Amer. J. Math. 102 (1980), 409-446 Zbl0433.14033
- Jun-ichi Igusa, On the nullwerte of Jacobians of odd theta functions, Symposia Mathematica, Vol. XXIV (Sympos., INDAM, Rome, 1979) (1981), 83-95, Academic Press, London Zbl0458.14017MR619242
- Jun-ichi Igusa, Problems on abelian functions at the time of Poincaré and some at present, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 161-174 Zbl0484.14015MR640943
- Jun-ichi Igusa, Multiplicity one theorem and problems related to Jacobi’s formula, Amer. J. Math. 105 (1983), 157-187 Zbl0527.14037
- P. Lockhart, On the discriminant of a hyperelliptic curve, Trans. Amer. Math. Soc. 342 (1994), 729-752 Zbl0815.11031MR1195511
- MAGMA, http://magma.math.usyd.edu.au/magma/, (2004)
- Henry McKean, Victor Moll, Elliptic curves, (1997), Cambridge University Press, Cambridge Zbl0895.11002MR1471703
- Jean-François Mestre, Construction de courbes de genre à partir de leurs modules, Effective methods in algebraic geometry (Castiglioncello, 1990) 94 (1991), 313-334, Birkhäuser Boston, Boston, MA Zbl0752.14027MR1106431
- David Mumford, Tata lectures on theta. II, 43 (1984), Birkhäuser Boston Inc., Boston, MA Zbl0549.14014MR742776
- G. Rosenhain, Mémoire sur les fonctions de deux variables et à quatre périodes qui sont les inverses des intégrales ultra-elliptiques de la première classe, Mémoires des savants étrangers XI (1851), 362-468
- Goro Shimura, Abelian varieties with complex multiplication and modular functions, 46 (1998), Princeton University Press, Princeton, NJ Zbl0908.11023MR1492449
- Joseph H. Silverman, The arithmetic of elliptic curves, 106 (1992), Springer-Verlag, New York Zbl0585.14026MR1329092
- Koichi Takase, A generalization of Rosenhain’s normal form for hyperelliptic curves with an application, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), 162-165 Zbl0924.14016
- J. Thomae, Beitrag zur Bestimmung von durch die Klassenmoduln algebraischer Funktionen, J. reine angew. Math. 71 (1870), 201-222
- Paul van Wamelen, Examples of genus two CM curves defined over the rationals, Math. Comp. 68 (1999), 307-320 Zbl0906.14025MR1609658
- Xiang Dong Wang, -dimensional simple factors of , Manuscripta Math. 87 (1995), 179-197 Zbl0846.14007MR1334940
- Hermann-Josef Weber, Hyperelliptic simple factors of with dimension at least , Experiment. Math. 6 (1997), 273-287 Zbl1115.14304MR1606908
- André Weil, Sur les périodes des intégrales abéliennes, Comm. Pure Appl. Math. 29 (1976), 813-819 Zbl0342.14020MR422164
- Annegret Weng, A class of hyperelliptic CM-curves of genus three, J. Ramanujan Math. Soc. 16 (2001), 339-372 Zbl1066.11028MR1877806
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.