On the zeta functions of prehomogeneous vector spaces for a pair of simple algebras

Takashi Taniguchi[1]

  • [1] University of Tokyo Graduate School of Mathematical Sciences 3–8–1 Komaba Megoro-Ku Tokyo 153-0041 (Japan)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 4, page 1331-1358
  • ISSN: 0373-0956

Abstract

top
In this paper we consider the prehomogeneous vector space for a pair of simple algebras which are inner forms of the D 4 type and the E 6 type. We mainly study the non-split cases. The main purpose of this paper is to determine the principal parts of the global zeta functions associated with these spaces when the simple algebras are non-split. We also give a description of the sets of rational orbits of these spaces, which clarifies the expected density theorems arising from the properties of these zeta functions.

How to cite

top

Taniguchi, Takashi. "On the zeta functions of prehomogeneous vector spaces for a pair of simple algebras." Annales de l’institut Fourier 57.4 (2007): 1331-1358. <http://eudml.org/doc/10260>.

@article{Taniguchi2007,
abstract = {In this paper we consider the prehomogeneous vector space for a pair of simple algebras which are inner forms of the $D_4$ type and the $E_6$ type. We mainly study the non-split cases. The main purpose of this paper is to determine the principal parts of the global zeta functions associated with these spaces when the simple algebras are non-split. We also give a description of the sets of rational orbits of these spaces, which clarifies the expected density theorems arising from the properties of these zeta functions.},
affiliation = {University of Tokyo Graduate School of Mathematical Sciences 3–8–1 Komaba Megoro-Ku Tokyo 153-0041 (Japan)},
author = {Taniguchi, Takashi},
journal = {Annales de l’institut Fourier},
keywords = {prehomogeneous vector space; zeta function; simple algebra; global zeta function; Shintani zeta-function},
language = {eng},
number = {4},
pages = {1331-1358},
publisher = {Association des Annales de l’institut Fourier},
title = {On the zeta functions of prehomogeneous vector spaces for a pair of simple algebras},
url = {http://eudml.org/doc/10260},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Taniguchi, Takashi
TI - On the zeta functions of prehomogeneous vector spaces for a pair of simple algebras
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 4
SP - 1331
EP - 1358
AB - In this paper we consider the prehomogeneous vector space for a pair of simple algebras which are inner forms of the $D_4$ type and the $E_6$ type. We mainly study the non-split cases. The main purpose of this paper is to determine the principal parts of the global zeta functions associated with these spaces when the simple algebras are non-split. We also give a description of the sets of rational orbits of these spaces, which clarifies the expected density theorems arising from the properties of these zeta functions.
LA - eng
KW - prehomogeneous vector space; zeta function; simple algebra; global zeta function; Shintani zeta-function
UR - http://eudml.org/doc/10260
ER -

References

top
  1. N. Bourbaki, Algèbre. Éléments de mathématique, (1958), Hermann 
  2. B. Datskovsky, D. J. Wright, The adelic zeta function associated with the space of binary cubic forms II: Local theory., J. Reine Angew. Math. 367 (1986), 27-75 Zbl0575.10016MR839123
  3. B. Datskovsky, D. J. Wright., Density of discriminants of cubic extensions, J. Reine Angew. Math. 386 (1988), 116-138 Zbl0632.12007MR936994
  4. H. Davenport, H. Heilbronn., On the density of discriminants of cubic fields. II, Proc. Royal Soc. A322 (1971), 405-420 Zbl0212.08101MR491593
  5. R. Godement, H. Jacquet, Zeta Functions of Simple Algebras, Lecture Notes in Mathematics 260 (1972), Springer-Verlag, Berlin, Heidelberg, New York Zbl0244.12011MR342495
  6. A. C. Kable, D. J. Wright, Uniform distribution of the Steinitz invariants of quadratic and cubic extensions, Compos. Math. 142 (2006), 84-100 Zbl1113.11065MR2196763
  7. A. C. Kable, A. Yukie, The mean value of the product of class numbers of paired quadratic fields, I, Tohoku Math. J. 54 (2002), 513-565 Zbl1020.11079MR1936267
  8. D. Mumford, Lectures on curves on an algebraic surface, Annales of Mathematical Studies 59 (1966), PressPrinceton UniversityP. U., Princeton, New Jersey Zbl0187.42701MR209285
  9. H. Saito, On a classification of prehomogeneous vector spaces over local and global fields, Journal of Algebra 187 (1997), 510-536 Zbl0874.14046MR1430996
  10. H. Saito, Convergence of the zeta functions of prehomogeneous vector spaces, Nagoya. Math. J. 170 (2003), 1-31 Zbl1045.11083MR1994885
  11. M. Sato, T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1-155 Zbl0321.14030MR430336
  12. M. Sato, T. Shintani, On zeta functions associated with prehomogeneous vector spaces., Ann. of Math. 100 (1974), 131-170 Zbl0309.10014MR344230
  13. T. Shintani, On Dirichlet series whose coefficients are class-numbers of integral binary cubic forms, J. Math. Soc. Japan 24 (1972), 132-188 Zbl0227.10031MR289428
  14. T. Taniguchi, Distributions of discriminants of cubic algebras 
  15. T. Taniguchi, A mean value theorem for the square of class number times regulator of quadratic extensions Zbl1231.11111
  16. A. Weil, Basic number theory, (1974), Springer-Verlag, Berlin, Heidelberg, New York Zbl0823.11001MR427267
  17. D. J. Wright, The adelic zeta function associated to the space of binary cubic forms part I: Global theory, Math. Ann. 270 (1985), 503-534 Zbl0533.10020MR776169
  18. D. J. Wright, A. Yukie, Prehomogeneous vector spaces and field extensions, Invent. Math. 110 (1992), 283-314 Zbl0803.12004MR1185585
  19. A. Yukie, Shintani Zeta Functions, Lecture Note Series 183 (1993), London Math. Soc. Zbl0801.11021MR1267735
  20. A. Yukie, On the Shintani zeta function for the space of pairs of binary Hermitian forms, J. Number Theory 92 (2002), 205-256 Zbl1020.11078MR1884702

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.