A mean value theorem for the square of class number times regulator of quadratic extensions

Takashi Taniguchi[1]

  • [1] University of Tokyo Graduate School of Mathematical Sciences 3–8–1 Komaba Meguro-Ku Tokyo 153-0041 (Japan)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 2, page 625-670
  • ISSN: 0373-0956

Abstract

top
Let k be a number field. In this paper, we give a formula for the mean value of the square of class number times regulator for certain families of quadratic extensions of k characterized by finitely many local conditions. We approach this by using the theory of the zeta function associated with the space of pairs of quaternion algebras. We also prove an asymptotic formula of the correlation coefficient for class number times regulator of certain families of quadratic extensions.

How to cite

top

Taniguchi, Takashi. "A mean value theorem for the square of class number times regulator of quadratic extensions." Annales de l’institut Fourier 58.2 (2008): 625-670. <http://eudml.org/doc/10327>.

@article{Taniguchi2008,
abstract = {Let $k$ be a number field. In this paper, we give a formula for the mean value of the square of class number times regulator for certain families of quadratic extensions of $k$ characterized by finitely many local conditions. We approach this by using the theory of the zeta function associated with the space of pairs of quaternion algebras. We also prove an asymptotic formula of the correlation coefficient for class number times regulator of certain families of quadratic extensions.},
affiliation = {University of Tokyo Graduate School of Mathematical Sciences 3–8–1 Komaba Meguro-Ku Tokyo 153-0041 (Japan)},
author = {Taniguchi, Takashi},
journal = {Annales de l’institut Fourier},
keywords = {Density theorem; prehomogeneous vector space; quaternion algebra; local zeta function; density theorem},
language = {eng},
number = {2},
pages = {625-670},
publisher = {Association des Annales de l’institut Fourier},
title = {A mean value theorem for the square of class number times regulator of quadratic extensions},
url = {http://eudml.org/doc/10327},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Taniguchi, Takashi
TI - A mean value theorem for the square of class number times regulator of quadratic extensions
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 2
SP - 625
EP - 670
AB - Let $k$ be a number field. In this paper, we give a formula for the mean value of the square of class number times regulator for certain families of quadratic extensions of $k$ characterized by finitely many local conditions. We approach this by using the theory of the zeta function associated with the space of pairs of quaternion algebras. We also prove an asymptotic formula of the correlation coefficient for class number times regulator of certain families of quadratic extensions.
LA - eng
KW - Density theorem; prehomogeneous vector space; quaternion algebra; local zeta function; density theorem
UR - http://eudml.org/doc/10327
ER -

References

top
  1. B. Datskovsky, A mean value theorem for class numbers of quadratic extensions, Contemporary Mathematics 143 (1993), 179-242 Zbl0791.11058MR1210518
  2. B. Datskovsky, D. J. Wright, The adelic zeta function associated with the space of binary cubic forms II: Local theory, J. Reine Angew. Math. 367 (1986), 27-75 Zbl0575.10016MR839123
  3. B. Datskovsky, D. J. Wright, Density of discriminants of cubic extensions, J. Reine Angew. Math. 386 (1988), 116-138 Zbl0632.12007MR936994
  4. A. Granville, K. Soundararajan, The distributions of values of L ( 1 , χ d ) , Geom. Funct. Anal. 13 (2003), 992-1028 Zbl1044.11080MR2024414
  5. A. C. Kable, D. J. Wright, Uniform distribution of the Steinitz invariants of quadratic and cubic extensions, Compos. Math. 142 (2006), 84-100 Zbl1113.11065MR2196763
  6. A. C. Kable, A. Yukie, The mean value of the product of class numbers of paired quadratic fields, I, Tohoku Math. J. 54 (2002), 513-565 Zbl1020.11079MR1936267
  7. A. C. Kable, A. Yukie, The mean value of the product of class numbers of paired quadratic fields, II, J. Math. Soc. Japan 55 (2003), 739-764 Zbl1039.11087MR1978221
  8. A. C. Kable, A. Yukie, The mean value of the product of class numbers of paired quadratic fields, III, J. Number Theory 99 (2003), 185-218 Zbl1039.11086MR1957252
  9. D. Mumford, J. Fogarty, Geometric invariant theory, Springer-Verlag (1982) Zbl0504.14008MR719371
  10. M. Peter, Momente der Klassenzahlen binärer quadratischer Formen mit ganzalgebraischen Koeffizienten, Acta Arithm. 70 (1995), 43-77 Zbl0817.11025MR1318761
  11. Waterloo Maple Software, Maple V, Waterloo Maple Inc., Waterloo, Ontario (1994) 
  12. T. Taniguchi, Distributions of discriminants of cubic algebras 
  13. T. Taniguchi, Distributions of discriminants of cubic algebras II 
  14. T. Taniguchi, On propotional constants of the mean value of class numbers of quadratic extensions, Trans. Amer. Math. Soc. 359 (2007), 5517-5524 Zbl1134.11041MR2327040
  15. T. Taniguchi, On the zeta functions of prehomogeneous vector spaces for a pair of simple algebras, Ann. Inst. Fourier 57 (2007), 1331-1358 Zbl1173.11050MR2339334
  16. M. F. Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics 800 (1980), Springer-Verlag, Berlin, Heidelberg, New York Zbl0422.12008MR580949
  17. A. Weil, Basic number theory, Springer-Verlag (1974) Zbl0823.11001
  18. D. J. Wright, A. Yukie, Prehomogeneous vector spaces and field extensions, Invent. Math. 110 (1992), 283-314 Zbl0803.12004MR1185585

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.