A mean value theorem for the square of class number times regulator of quadratic extensions
- [1] University of Tokyo Graduate School of Mathematical Sciences 3–8–1 Komaba Meguro-Ku Tokyo 153-0041 (Japan)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 2, page 625-670
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topTaniguchi, Takashi. "A mean value theorem for the square of class number times regulator of quadratic extensions." Annales de l’institut Fourier 58.2 (2008): 625-670. <http://eudml.org/doc/10327>.
@article{Taniguchi2008,
abstract = {Let $k$ be a number field. In this paper, we give a formula for the mean value of the square of class number times regulator for certain families of quadratic extensions of $k$ characterized by finitely many local conditions. We approach this by using the theory of the zeta function associated with the space of pairs of quaternion algebras. We also prove an asymptotic formula of the correlation coefficient for class number times regulator of certain families of quadratic extensions.},
affiliation = {University of Tokyo Graduate School of Mathematical Sciences 3–8–1 Komaba Meguro-Ku Tokyo 153-0041 (Japan)},
author = {Taniguchi, Takashi},
journal = {Annales de l’institut Fourier},
keywords = {Density theorem; prehomogeneous vector space; quaternion algebra; local zeta function; density theorem},
language = {eng},
number = {2},
pages = {625-670},
publisher = {Association des Annales de l’institut Fourier},
title = {A mean value theorem for the square of class number times regulator of quadratic extensions},
url = {http://eudml.org/doc/10327},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Taniguchi, Takashi
TI - A mean value theorem for the square of class number times regulator of quadratic extensions
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 2
SP - 625
EP - 670
AB - Let $k$ be a number field. In this paper, we give a formula for the mean value of the square of class number times regulator for certain families of quadratic extensions of $k$ characterized by finitely many local conditions. We approach this by using the theory of the zeta function associated with the space of pairs of quaternion algebras. We also prove an asymptotic formula of the correlation coefficient for class number times regulator of certain families of quadratic extensions.
LA - eng
KW - Density theorem; prehomogeneous vector space; quaternion algebra; local zeta function; density theorem
UR - http://eudml.org/doc/10327
ER -
References
top- B. Datskovsky, A mean value theorem for class numbers of quadratic extensions, Contemporary Mathematics 143 (1993), 179-242 Zbl0791.11058MR1210518
- B. Datskovsky, D. J. Wright, The adelic zeta function associated with the space of binary cubic forms II: Local theory, J. Reine Angew. Math. 367 (1986), 27-75 Zbl0575.10016MR839123
- B. Datskovsky, D. J. Wright, Density of discriminants of cubic extensions, J. Reine Angew. Math. 386 (1988), 116-138 Zbl0632.12007MR936994
- A. Granville, K. Soundararajan, The distributions of values of , Geom. Funct. Anal. 13 (2003), 992-1028 Zbl1044.11080MR2024414
- A. C. Kable, D. J. Wright, Uniform distribution of the Steinitz invariants of quadratic and cubic extensions, Compos. Math. 142 (2006), 84-100 Zbl1113.11065MR2196763
- A. C. Kable, A. Yukie, The mean value of the product of class numbers of paired quadratic fields, I, Tohoku Math. J. 54 (2002), 513-565 Zbl1020.11079MR1936267
- A. C. Kable, A. Yukie, The mean value of the product of class numbers of paired quadratic fields, II, J. Math. Soc. Japan 55 (2003), 739-764 Zbl1039.11087MR1978221
- A. C. Kable, A. Yukie, The mean value of the product of class numbers of paired quadratic fields, III, J. Number Theory 99 (2003), 185-218 Zbl1039.11086MR1957252
- D. Mumford, J. Fogarty, Geometric invariant theory, Springer-Verlag (1982) Zbl0504.14008MR719371
- M. Peter, Momente der Klassenzahlen binärer quadratischer Formen mit ganzalgebraischen Koeffizienten, Acta Arithm. 70 (1995), 43-77 Zbl0817.11025MR1318761
- Waterloo Maple Software, Maple V, Waterloo Maple Inc., Waterloo, Ontario (1994)
- T. Taniguchi, Distributions of discriminants of cubic algebras
- T. Taniguchi, Distributions of discriminants of cubic algebras II
- T. Taniguchi, On propotional constants of the mean value of class numbers of quadratic extensions, Trans. Amer. Math. Soc. 359 (2007), 5517-5524 Zbl1134.11041MR2327040
- T. Taniguchi, On the zeta functions of prehomogeneous vector spaces for a pair of simple algebras, Ann. Inst. Fourier 57 (2007), 1331-1358 Zbl1173.11050MR2339334
- M. F. Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics 800 (1980), Springer-Verlag, Berlin, Heidelberg, New York Zbl0422.12008MR580949
- A. Weil, Basic number theory, Springer-Verlag (1974) Zbl0823.11001
- D. J. Wright, A. Yukie, Prehomogeneous vector spaces and field extensions, Invent. Math. 110 (1992), 283-314 Zbl0803.12004MR1185585
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.