Exponential sums with coefficients or and concentrated norms
B. Anderson[1]; J. M. Ash[2]; R. L. Jones[3]; D. G. Rider[4]; B. Saffari[5]
- [1] 130 Channing Ln Chapel Hill, NC 27516 (USA)
- [2] DePaul University Department of Mathematical Sciences Chicago, IL 60614 (USA)
- [3] Conserve School 5400 N. Black Oak Lake Drive Land O’Lakes, WI 54540 (USA)
- [4] University of Wisconsin Department of Mathematics 480 Lincoln Drive Madison, WI 53706-1313 (USA)
- [5] Université de Paris XI (Orsay) Département de Mathématiques Université de Paris XI (Orsay) 91405 Orsay Cedex (France)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 5, page 1377-1404
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAnderson, B., et al. "Exponential sums with coefficients $0$ or $1$ and concentrated $L^{p}$ norms." Annales de l’institut Fourier 57.5 (2007): 1377-1404. <http://eudml.org/doc/10262>.
@article{Anderson2007,
abstract = {A sum of exponentials of the form $f(x)=\exp \left( 2\pi iN_\{1\}x\right) +\exp \left( 2\pi iN_\{2\}x\right) +\cdots +\exp \left( 2\pi iN_\{m\}x\right) $, where the $N_\{k\}$ are distinct integers is called an idempotent trigonometric polynomial (because the convolution of $f$ with itself is $f$) or, simply, an idempotent. We show that for every $p>1,\,$ and every set $E$ of the torus $\mathbb\{T=R\}/\mathbb\{Z\}$ with $|E| >0,$ there are idempotents concentrated on $E$ in the $L^\{p\}$ sense. More precisely, for each $p>1,$ there is an explicitly calculated constant $C_\{p\}>0$ so that for each $E$ with $|E| >0$ and $\epsilon >0$ one can find an idempotent $f$ such that the ratio $\left( \int _\{E\}|f| ^\{p\}\big / \int _\{\mathbb\{T\}\}|f| ^\{p\} \right) ^\{1/p\}$ is greater than $C_\{p\}-\epsilon $. This is in fact a lower bound result and, though not optimal, it is close to the best that our method gives. We also give both heuristic and computational evidence for the still open problem of whether the $L^\{p\}$ concentration phenomenon fails to occur when $p=1.$},
affiliation = {130 Channing Ln Chapel Hill, NC 27516 (USA); DePaul University Department of Mathematical Sciences Chicago, IL 60614 (USA); Conserve School 5400 N. Black Oak Lake Drive Land O’Lakes, WI 54540 (USA); University of Wisconsin Department of Mathematics 480 Lincoln Drive Madison, WI 53706-1313 (USA); Université de Paris XI (Orsay) Département de Mathématiques Université de Paris XI (Orsay) 91405 Orsay Cedex (France)},
author = {Anderson, B., Ash, J. M., Jones, R. L., Rider, D. G., Saffari, B.},
journal = {Annales de l’institut Fourier},
keywords = {Idempotents; idempotent trigonometric polynomials; $L^\{p\}$ norms; Dirichlet kernel; concentrating norms; sums of exponentials; $L^\{1\}$ concentration conjecture; weak restricted operators; norms; concentration conjecture},
language = {eng},
number = {5},
pages = {1377-1404},
publisher = {Association des Annales de l’institut Fourier},
title = {Exponential sums with coefficients $0$ or $1$ and concentrated $L^\{p\}$ norms},
url = {http://eudml.org/doc/10262},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Anderson, B.
AU - Ash, J. M.
AU - Jones, R. L.
AU - Rider, D. G.
AU - Saffari, B.
TI - Exponential sums with coefficients $0$ or $1$ and concentrated $L^{p}$ norms
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 5
SP - 1377
EP - 1404
AB - A sum of exponentials of the form $f(x)=\exp \left( 2\pi iN_{1}x\right) +\exp \left( 2\pi iN_{2}x\right) +\cdots +\exp \left( 2\pi iN_{m}x\right) $, where the $N_{k}$ are distinct integers is called an idempotent trigonometric polynomial (because the convolution of $f$ with itself is $f$) or, simply, an idempotent. We show that for every $p>1,\,$ and every set $E$ of the torus $\mathbb{T=R}/\mathbb{Z}$ with $|E| >0,$ there are idempotents concentrated on $E$ in the $L^{p}$ sense. More precisely, for each $p>1,$ there is an explicitly calculated constant $C_{p}>0$ so that for each $E$ with $|E| >0$ and $\epsilon >0$ one can find an idempotent $f$ such that the ratio $\left( \int _{E}|f| ^{p}\big / \int _{\mathbb{T}}|f| ^{p} \right) ^{1/p}$ is greater than $C_{p}-\epsilon $. This is in fact a lower bound result and, though not optimal, it is close to the best that our method gives. We also give both heuristic and computational evidence for the still open problem of whether the $L^{p}$ concentration phenomenon fails to occur when $p=1.$
LA - eng
KW - Idempotents; idempotent trigonometric polynomials; $L^{p}$ norms; Dirichlet kernel; concentrating norms; sums of exponentials; $L^{1}$ concentration conjecture; weak restricted operators; norms; concentration conjecture
UR - http://eudml.org/doc/10262
ER -
References
top- Bruce Anderson, J. Marshall Ash, Roger L. Jones, Daniel G. Rider, Bahman Saffari, norm local estimates for exponential sums, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), 765-769 Zbl0971.11047MR1769944
- J. Marshall Ash, Weak restricted and very restricted operators on , Trans. Amer. Math. Soc. 281 (1984), 675-689 Zbl0537.42009MR722768
- J. Marshall Ash, Triangular Dirichlet kernels and growth of Lebesgue constants, (2004) Zbl1211.42012
- J. Marshall Ash, Roger L. Jones, Bahman Saffari, Inégalités sur des sommes d’exponentielles, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 899-902 Zbl0537.42001
- Michael Cowling, Some applications of Grothendieck’s theory of topological tensor products in harmonic analysis, Math. Ann. 232 (1978), 273-285 Zbl0343.43012
- Myriam Déchamps, Hervé Queffélec, Françoise Piquard, Estimations locales de sommes d’exponentielles, Harmonic analysis: study group on translation-invariant Banach spaces 84 (1984), Univ. Paris XI, Orsay Zbl0562.42010
- Myriam Dechamps-Gondim, Françoise Piquard-Lust, Hervé Queffélec, Estimations locales de sommes d’exponentielles, C. R. Acad. Sci. Paris Sér. I Math. 297 (1983), 153-156 Zbl0534.42001
- Glyn Harman, Metric number theory, 18 (1998), The Clarendon Press Oxford University Press, New York Zbl1081.11057MR1672558
- Jean-Pierre Kahane, (1982)
- Jean-Pierre Kahane, Some random series of functions, 5 (1985), Cambridge University Press, Cambridge Zbl0571.60002MR833073
- T. W. Körner, Fourier analysis, (1989), Cambridge University Press, Cambridge Zbl0649.42001MR1035216
- H. L. Montgomery, (November 1980 and October 1982)
- F. L. Nazarov, A. N. Podkorytov, The behavior of the Lebesgue constants of two-dimensional Fourier sums over polygons, St. Petersburg Math. J. 7 (1996), 663-680 Zbl0859.42011MR1356537
- S. K. Pichorides, (1980)
- A. A. Yudin, V. A. Yudin, Polygonal Dirichlet kernels and growth of Lebesgue constants, Mat. Zametki 37 (1985), 220-236, 301 Zbl0575.42002MR784367
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, (1959), Cambridge University Press, New York Zbl0085.05601MR107776
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.