The asymptotic trace norm of random circulants and the graph energy
Discussiones Mathematicae Probability and Statistics (2016)
- Volume: 36, Issue: 1-2, page 67-92
- ISSN: 1509-9423
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] B. Anderson, J. Ash, R. Jones, D. Rider and B. Saffari, Exponential sums with coefficients 0 or 1 and concentrated Lp norms, Annales de l’Institut Fourier (Grenoble) 57 (5) (2007), 1377-1404. Zbl1133.42004
- [2] B. von Bahr, On the convergence of moments in the central limit theorem, Ann. Math. Statist. 36 (1965), 808-818. Zbl0139.35301
- [3] Z. Bai, Methodologies in spectral analysis of large dimensional random matrices: a review, Statistica Sinica 9 (1999), 611-677. Zbl0949.60077
- [4] S. Blackburn and I. Shparlinski, On the average energy of circulant graphs, Linear Algebra and its Applications 428 (8-9) (2008), 1956-1963. Zbl1135.05036
- [5] A. Bose and J. Mitra, Limiting spectral distribution of a special circulant, Statistics & Probability Letters 60 (2002), 111-120. Zbl1014.60038
- [6] W. Bryc and A. Dembo, Spectral measure of large random Hankel, Markov and Toeplitz matrices, Ann. Probab. 34 (1) (2006), 1-38. Zbl1094.15009
- [7] X. Chen, X. Li and H. Lian, The skew energy of random oriented graphs, Linear Algebra and its Applications 438 (11) (2013), 4547-4556. Zbl1282.05049
- [8] R. van Dal, G. Tijssen, Z. Tuza, J. van der Veen, C. Zamfirescu and T. Zamfirescu, Hamiltonian properties of Toeplitz graphs, Discrete Math. 159 (1-3) (1996), 9-81. Zbl0864.05060
- [9] K. Das and I. Gutman, On incidence energy of graphs, Linear Algebra and its Applications 446 (2014), 329-344.
- [10] A. Daugavet, Convergence rates of some numerical characteristics of distributions in the central limit theorem, Vestnik Leningrad University Mathematics 13 (1981), 175-182. Zbl0479.60032
- [11] Ph. Davis and Ph. Rabinowitz, Methods of Numerical Integration (Academic Press, Orlando, FL, 1984).
- [12] W. Du, X. Li and Y. Li, The energy of random graphs, Linear Algebra and its Applications 435 (10) (2011), 2334-2346. Zbl1222.05153
- [13] A. Ilić and M. Bašic, New results on the energy of integral circulant graphs, Appl. Math. Comput. 218 (7) (2011), 3470-3482. Zbl1242.05163
- [14] S. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications 94 (Cambridge University Press, Cambridge, 2003).
- [15] I. Gohberg and M. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Translations of Mathematical Monographs 18 (American Mathematical Society, Providence, 1969). Zbl0181.13504
- [16] R. Goldberg, Methods of Real Analysis (Wiley & Sons, New York-London-Sydney, 1976).
- [17] R. Gray, Toeplitz and circulant matrices: a review, Foundations and Trends in Communications and Information Theory 2 (3) (2006), 155-239.
- [18] U. Grenander and G. Szegö, Toeplitz Forms and Their Applications (University of California Press, Los Angeles, 1958). Zbl0080.09501
- [19] A. Guionnet and O. Zeitouni, Concentration of the spectral measure for large matrices, Electronic Communications in Probability 5 (2000), 119-136. Zbl0969.15010
- [20] I. Gutman, Hyperenergetic and hypoenergetic graphs, Zbornik Radova 14 (22) (2011), Selected topics on applications of graph spectra, 113-135. Zbl1289.05286
- [21] C. Hammond and S. Miller, Distribution of eigenvalues for the ensemble of real symmetric Toeplitz matrices, J. Theor. Probab. 18 (3) (2005), 537-566. Zbl1086.15024
- [22] V. Kargin, Concentration of the spectral measure for large matrices, Electronic Communications in Probability 14 (2009), 412-421.
- [23] P. Lancaster, Theory of Matrices (Academic Press, New York, 1969). Zbl0186.05301
- [24] T. Le and J. Sander, Extremal energies of integral circulant graphs via multiplicativity, Linear Algebra and its Applications 437 (6) (2012), 1408-1421. Zbl1243.05150
- [25] X. Li, Y. Shi and I. Gutman, Graph Energy (Springer, New York, 2012).
- [26] M. Meckes, Some results on random circulant matrices, in High dimensional probability V: the Luminy volume, Institute of Mathematical Statistics Collections, 5 (Beachwood, OH, 2009), 213-223.
- [27] B. McKay, The expected eigenvalue distribution of a large regular graph, Linear Algebra and its Applications 40 (1981), 203-216. Zbl0468.05039
- [28] M. Miranda and P. Tilli, Asymptotic spectra of Hermitian block Toeplitz matrices and preconditioning results, SIAM Journal on Matrix Analysis and Applications 21 (3) (2000), 867-881. Zbl0957.15011
- [29] S. Molchanov, L. Pastur and A. Khorunzhii, Distribution of the eigenvalues of random band matrices in the limit of their infinite order, Theor. Math. Phys. 90 (2)(1992), 108-118.
- [30] V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl. 326 (2) (2007), 1472-1475. Zbl1113.15016
- [31] V. Nikiforov, Beyond graph energy: Norms of graphs and matrices, Linear Algebra and its Applications 506 (2016), 82-138. Zbl1344.05089
- [32] V. Nikiforov, Remarks on the energy of regular graphs, Linear Algebra and its Applications 508 (2016), 133-145. Zbl1346.05174
- [33] L. Paditz, On the analytical structure of the constant in the nonuniform version of the Esseen inequality, Statistics 20 (3) (1989), 453-464. Zbl0683.60018
- [34] I. Pinelis, On the nonuniform Berry-Esseen bound, (2013), available at http://arxiv.org/abs/1301.2828.
- [35] H. Ren and F. Zhang, Fully-angular polyhex chains with minimal total p-electron energy, J. Math. Anal. Appl. 326 (2) (2007), 1244-1253. Zbl1104.92072
- [36] H. Ren and F. Zhang, Double hexagonal chains with maximal Hosoya index and minimal Merrifield-Simmons index, J. Math. Chem. 42 (4) (2007), 679-690. Zbl1217.05214
- [37] J. Sander and T. Sander, The maximal energy of classes of integral circulant graphs, Discrete Appl. Math. 160 (13-14) (2012), 2015-2029. Zbl1246.05099
- [38] A. Shiryaev, Probability, Graduate Texts in Mathematics 95 (Springer-Verlag, New York, 1996).
- [39] M. Talagrand, A new look at independence, Ann. Probab. 24 (1) (1996), 1-34. Zbl0858.60019
- [40] G. Tee, Eigenvectors of block circulant and alternating circulant matrices, New Zealand J. Math. 36 (2007), 195-211. Zbl1186.15008
- [41] L. Tran, V. Vu and K. Wang, Sparse random graphs: eigenvalues and eigenvectors, Random Structures Algorithms 42 (1) (2013), 110-134. Zbl1257.05089