Embedding subsets of tori Properly into 2

Erlend Fornæss Wold[1]

  • [1] University of Oslo Department of Mathematics P.O. Box 1053, Blindern 0316 Oslo (Norway)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 5, page 1537-1555
  • ISSN: 0373-0956

Abstract

top
Let 𝕋 be a complex one-dimensional torus. We prove that all subsets of 𝕋 with finitely many boundary components (none of them being points) embed properly into 2 . We also show that the algebras of analytic functions on certain countably connected subsets of closed Riemann surfaces are doubly generated.

How to cite

top

Wold, Erlend Fornæss. "Embedding subsets of tori Properly into $\mathbb{C}^2$." Annales de l’institut Fourier 57.5 (2007): 1537-1555. <http://eudml.org/doc/10269>.

@article{Wold2007,
abstract = {Let $\mathbb\{T\}$ be a complex one-dimensional torus. We prove that all subsets of $\mathbb\{T\}$ with finitely many boundary components (none of them being points) embed properly into $\mathbb\{C\}^2$. We also show that the algebras of analytic functions on certain countably connected subsets of closed Riemann surfaces are doubly generated.},
affiliation = {University of Oslo Department of Mathematics P.O. Box 1053, Blindern 0316 Oslo (Norway)},
author = {Wold, Erlend Fornæss},
journal = {Annales de l’institut Fourier},
keywords = {Holomorphic embeddings; Riemann surfaces; holomorphic embeddings},
language = {eng},
number = {5},
pages = {1537-1555},
publisher = {Association des Annales de l’institut Fourier},
title = {Embedding subsets of tori Properly into $\mathbb\{C\}^2$},
url = {http://eudml.org/doc/10269},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Wold, Erlend Fornæss
TI - Embedding subsets of tori Properly into $\mathbb{C}^2$
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 5
SP - 1537
EP - 1555
AB - Let $\mathbb{T}$ be a complex one-dimensional torus. We prove that all subsets of $\mathbb{T}$ with finitely many boundary components (none of them being points) embed properly into $\mathbb{C}^2$. We also show that the algebras of analytic functions on certain countably connected subsets of closed Riemann surfaces are doubly generated.
LA - eng
KW - Holomorphic embeddings; Riemann surfaces; holomorphic embeddings
UR - http://eudml.org/doc/10269
ER -

References

top
  1. L. V. Ahlfors, Complex Analysis., (1966), McGraw Hill Zbl0154.31904MR510197
  2. H. Alexander, Explicit imbedding of the (punctured) disc into 2 ., Math.Helv. 52 (1977), 439-544 Zbl0376.32011MR481126
  3. H. Behnke, K. Stein, Entwicklung analytisher Funktionen auf Riemannschen Flachen., Math. Ann. 120 (1949), 430-461 Zbl0038.23502MR29997
  4. Y. Eliashberg, M. Gromov, Embeddings of Stein manifolds of dimension n into the affine space of dimension 3 n / 2 + 1 , Ann.Math. 136 (1992), 123-135 Zbl0758.32012MR1173927
  5. O. Forster, Plongements des variétés de Stein., Comm.Math.Helv. 45 (1970), 170-184 Zbl0184.31403MR269880
  6. O. Forster, Lectures on Riemann Surfaces, (1999), Springer-Verlag Zbl0475.30002MR1185074
  7. F. Forstnerič, M. Černe, Embedding some bordered Riemann surfaces in the affine plane., Math. Res. Lett. 9 (2002), 683-696 Zbl1030.32013MR1906070
  8. F. Forstnerič, The homotopy principle in complex analysis: A survey., Contemp. Math., Amer. Math. Soc., Providence, RI 332 (2003), 73-99 Zbl1048.32004MR2016091
  9. F. Forstnerič, E. Løw, Global holomorphic equivalence of smooth manifolds in k , Indiana Univ.Math.J. 46 (1997), 133-153 Zbl0883.32014MR1462799
  10. J. Globevnik, B. Stensønes, Holomorphic embeddings of some planar domains into 2 , Math. Ann. 303 (1995), 579-597 Zbl0847.32030MR1359950
  11. G. M. Goluzin, Geometric theorey of functions of a complex variable., (1969), American mathematical society, Providence, R.I. Zbl0183.07502MR247039
  12. R. C. Gunning, H. Rossi, Analytic functions of several complex variables, (1965), Prentice-Hall, Inc. Zbl0141.08601MR180696
  13. Z-X. He, O. Schramm, Fixed points, Koebe uniformization, and circle packings., Ann.Math. 137 (1993), 369-406 Zbl0777.30002MR1207210
  14. K. Kasahara, T. Nishino, As announced in Math Reviews., Math.Reviews. 38 (1969) 
  15. H. B. Laufer, Imbedding annuli in 2 ., J. d’Analyse Math. 26 (1973), 187-215 Zbl0286.32017
  16. B. Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution., Ann. Inst. Fourier 6 (1955-56), 271-354 Zbl0071.09002MR86990
  17. J. Schurmann, Embeddings of Stein spaces into affine spaces of minimal dimension., Math.Ann. 307 (1997), 381-399 Zbl0881.32007MR1437045
  18. G. Stolzenberg, Uniform approximation on smooth curves., Acta Math. 115 (1966), 185-198 Zbl0143.30005MR192080
  19. E. F. Wold, Embedding Riemann surfaces into 2 ., Internat.J.Math 17 (2006), 963-974 Zbl1109.32013MR2261643
  20. E. F. Wold, Proper holomorphic embeddings of finitely and some infinitely connected subsets of into 2 ., Math.Z. 252 (2006), 1-9 Zbl1086.32015MR2209147

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.