Embedding subsets of tori Properly into
- [1] University of Oslo Department of Mathematics P.O. Box 1053, Blindern 0316 Oslo (Norway)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 5, page 1537-1555
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topWold, Erlend Fornæss. "Embedding subsets of tori Properly into $\mathbb{C}^2$." Annales de l’institut Fourier 57.5 (2007): 1537-1555. <http://eudml.org/doc/10269>.
@article{Wold2007,
abstract = {Let $\mathbb\{T\}$ be a complex one-dimensional torus. We prove that all subsets of $\mathbb\{T\}$ with finitely many boundary components (none of them being points) embed properly into $\mathbb\{C\}^2$. We also show that the algebras of analytic functions on certain countably connected subsets of closed Riemann surfaces are doubly generated.},
affiliation = {University of Oslo Department of Mathematics P.O. Box 1053, Blindern 0316 Oslo (Norway)},
author = {Wold, Erlend Fornæss},
journal = {Annales de l’institut Fourier},
keywords = {Holomorphic embeddings; Riemann surfaces; holomorphic embeddings},
language = {eng},
number = {5},
pages = {1537-1555},
publisher = {Association des Annales de l’institut Fourier},
title = {Embedding subsets of tori Properly into $\mathbb\{C\}^2$},
url = {http://eudml.org/doc/10269},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Wold, Erlend Fornæss
TI - Embedding subsets of tori Properly into $\mathbb{C}^2$
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 5
SP - 1537
EP - 1555
AB - Let $\mathbb{T}$ be a complex one-dimensional torus. We prove that all subsets of $\mathbb{T}$ with finitely many boundary components (none of them being points) embed properly into $\mathbb{C}^2$. We also show that the algebras of analytic functions on certain countably connected subsets of closed Riemann surfaces are doubly generated.
LA - eng
KW - Holomorphic embeddings; Riemann surfaces; holomorphic embeddings
UR - http://eudml.org/doc/10269
ER -
References
top- L. V. Ahlfors, Complex Analysis., (1966), McGraw Hill Zbl0154.31904MR510197
- H. Alexander, Explicit imbedding of the (punctured) disc into ., Math.Helv. 52 (1977), 439-544 Zbl0376.32011MR481126
- H. Behnke, K. Stein, Entwicklung analytisher Funktionen auf Riemannschen Flachen., Math. Ann. 120 (1949), 430-461 Zbl0038.23502MR29997
- Y. Eliashberg, M. Gromov, Embeddings of Stein manifolds of dimension into the affine space of dimension , Ann.Math. 136 (1992), 123-135 Zbl0758.32012MR1173927
- O. Forster, Plongements des variétés de Stein., Comm.Math.Helv. 45 (1970), 170-184 Zbl0184.31403MR269880
- O. Forster, Lectures on Riemann Surfaces, (1999), Springer-Verlag Zbl0475.30002MR1185074
- F. Forstnerič, M. Černe, Embedding some bordered Riemann surfaces in the affine plane., Math. Res. Lett. 9 (2002), 683-696 Zbl1030.32013MR1906070
- F. Forstnerič, The homotopy principle in complex analysis: A survey., Contemp. Math., Amer. Math. Soc., Providence, RI 332 (2003), 73-99 Zbl1048.32004MR2016091
- F. Forstnerič, E. Løw, Global holomorphic equivalence of smooth manifolds in , Indiana Univ.Math.J. 46 (1997), 133-153 Zbl0883.32014MR1462799
- J. Globevnik, B. Stensønes, Holomorphic embeddings of some planar domains into , Math. Ann. 303 (1995), 579-597 Zbl0847.32030MR1359950
- G. M. Goluzin, Geometric theorey of functions of a complex variable., (1969), American mathematical society, Providence, R.I. Zbl0183.07502MR247039
- R. C. Gunning, H. Rossi, Analytic functions of several complex variables, (1965), Prentice-Hall, Inc. Zbl0141.08601MR180696
- Z-X. He, O. Schramm, Fixed points, Koebe uniformization, and circle packings., Ann.Math. 137 (1993), 369-406 Zbl0777.30002MR1207210
- K. Kasahara, T. Nishino, As announced in Math Reviews., Math.Reviews. 38 (1969)
- H. B. Laufer, Imbedding annuli in ., J. d’Analyse Math. 26 (1973), 187-215 Zbl0286.32017
- B. Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution., Ann. Inst. Fourier 6 (1955-56), 271-354 Zbl0071.09002MR86990
- J. Schurmann, Embeddings of Stein spaces into affine spaces of minimal dimension., Math.Ann. 307 (1997), 381-399 Zbl0881.32007MR1437045
- G. Stolzenberg, Uniform approximation on smooth curves., Acta Math. 115 (1966), 185-198 Zbl0143.30005MR192080
- E. F. Wold, Embedding Riemann surfaces into ., Internat.J.Math 17 (2006), 963-974 Zbl1109.32013MR2261643
- E. F. Wold, Proper holomorphic embeddings of finitely and some infinitely connected subsets of into ., Math.Z. 252 (2006), 1-9 Zbl1086.32015MR2209147
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.