Li coefficients for automorphic -functions
- [1] University of Michigan Ann Arbor, MI 48109-1043 (USA)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 5, page 1689-1740
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLagarias, Jeffrey C.. "Li coefficients for automorphic $L$-functions." Annales de l’institut Fourier 57.5 (2007): 1689-1740. <http://eudml.org/doc/10275>.
@article{Lagarias2007,
abstract = {Xian-Jin Li gave a criterion for the Riemann hypothesis in terms of the positivity of a set of coefficients $\lambda _n$$(n= 1, 2, \ldots )$. We define similar coefficients $\lambda _n(\pi )$ associated to principal automorphic $L$-functions $L(s, \pi )$ over $GL(N)$. We relate these cofficients to values of Weil’s quadratic functional associated to the representation $\pi $ on a suitable set of test functions. The positivity of the real parts of these coefficients is a necessary and sufficient condition for the Riemann hypothesis for $L(s, \pi )$. Assuming the Riemann hypothesis for $L(s, \pi )$, we show that $\lambda _n(\pi ) = \frac\{N\}\{2\} n \log n + C_1(\pi ) n + O (\sqrt\{n\}\log \{n\}),$ where $C_1(\pi )$ is a real-valued constant. We construct an entire function $F_\{\pi \}(z)$ of exponential type that interpolates the generalized Li coefficients at integer values. Assuming the Riemann hypothesis for $L(s, \pi )$, this function on the real axis has a Fourier transform that is a tempered distribution whose support is a countable set in $[-\pi , \pi ]$ having $0$ as its only limit point.},
affiliation = {University of Michigan Ann Arbor, MI 48109-1043 (USA)},
author = {Lagarias, Jeffrey C.},
journal = {Annales de l’institut Fourier},
keywords = {Automorphic $L$-function; zeta function; automorphic -function},
language = {eng},
number = {5},
pages = {1689-1740},
publisher = {Association des Annales de l’institut Fourier},
title = {Li coefficients for automorphic $L$-functions},
url = {http://eudml.org/doc/10275},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Lagarias, Jeffrey C.
TI - Li coefficients for automorphic $L$-functions
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 5
SP - 1689
EP - 1740
AB - Xian-Jin Li gave a criterion for the Riemann hypothesis in terms of the positivity of a set of coefficients $\lambda _n$$(n= 1, 2, \ldots )$. We define similar coefficients $\lambda _n(\pi )$ associated to principal automorphic $L$-functions $L(s, \pi )$ over $GL(N)$. We relate these cofficients to values of Weil’s quadratic functional associated to the representation $\pi $ on a suitable set of test functions. The positivity of the real parts of these coefficients is a necessary and sufficient condition for the Riemann hypothesis for $L(s, \pi )$. Assuming the Riemann hypothesis for $L(s, \pi )$, we show that $\lambda _n(\pi ) = \frac{N}{2} n \log n + C_1(\pi ) n + O (\sqrt{n}\log {n}),$ where $C_1(\pi )$ is a real-valued constant. We construct an entire function $F_{\pi }(z)$ of exponential type that interpolates the generalized Li coefficients at integer values. Assuming the Riemann hypothesis for $L(s, \pi )$, this function on the real axis has a Fourier transform that is a tempered distribution whose support is a countable set in $[-\pi , \pi ]$ having $0$ as its only limit point.
LA - eng
KW - Automorphic $L$-function; zeta function; automorphic -function
UR - http://eudml.org/doc/10275
ER -
References
top- E. W. Barnes, On the expression of Euler’s constant as a definite integral, Messenger of Math. 33 (1903), 59-61
- P. Biane, J. Pitman, M. Yor, Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions, Bull. Amer. Math. Soc. 38 (2001), 435-465 Zbl1040.11061MR1848256
- E. Bombieri, Remarks on Weil’s quadratic functional in the theory of prime numbers I, Rend. Mat. Acc. Lincei, Ser. IX 11 (2000), 183-233 Zbl1008.11034
- E. Bombieri, J. C. Lagarias, Complements to Li’s criterion for the Riemann hypothesis, J. Number Theory 77 (1999), 274-287 Zbl0972.11079
- F. C. S. Brown, Li’s criterion and zero-free regions of -functions, J. Number Theory 111 (2005), 1-32 Zbl1154.11334
- J.-F. Burnol, The explicit formula in simple terms
- J.-F. Burnol, Sur les Formules Explicites I : analyse invariante, C. R. Acad. Sci. Paris, Série I 331 (2000), 423-428 Zbl0992.11064MR1792480
- M. Coffey, Relations and positivity results for the derivatives of the Riemann -function, J. Comput. Appl. Math. 166 (2004), 525-534 Zbl1107.11033MR2041196
- Mark W. Coffey, Toward verification of the Riemann hypothesis: application of the Li criterion, Math. Phys. Anal. Geom. 8 (2005), 211-255 Zbl1097.11042MR2177467
- J. Cogdell, Analytic theory of -functions for , An Introduction to the Langlands Program (2003), 197-228, BernsteinJ.J., Boston Zbl1111.11303MR1990380
- H. Cramér, Studien über die Nullstellen der Riemannschen Zetafunktion, Math. Zeitschr. 4 (1919), 104-130 Zbl47.0289.03MR1544354
- H. Davenport, Multiplicative Number Theory, (2000), Springer Verlag, New York Zbl0453.10002MR1790423
- C. Deninger, Local -factors of motives and regularized determinants, Invent. Math. 107 (1992), 135-150 Zbl0762.14015MR1135468
- C. Deninger, Lefschetz trace formulas and explicit formulas in analytic number theory, J. Reine Angew. 441 (1993), 1-15 Zbl0782.11034MR1228608
- C. Deninger, Evidence for a cohomological approach to analytic number theory, First European Congress of Mathematics I (1994), 491-510, Birkhäuser, Paris, 1992 Zbl0838.11002MR1341834
- C. Deninger, Motivic -functions and regularized determinants, Motives 55, part I (1994), 707-743, Amer. Math. Soc., Providence Zbl0816.14010MR1265547
- C. Deninger, Some analogies between number theory and dynamical systems on foliated spaces, Proc. Int. Cong. Math. I (1998), 163-186, Doc. Math., extra vol. 1, Berlin 1998 Zbl0899.14001MR1648030
- C. Deninger, On the nature of the ‘explicit formulas’ in analytic number theory–A simple example, Number Theoretic Methods 8 (2002), 97-118, Kluwer, Iizuka, 2001 Zbl1132.11347
- C. Deninger, M. Schröter, A distribution-theoretic proof of Guinand’s functional equation for Cramér’s V-function, J. Lond. Math. Soc. 52 (1995), 48-60 Zbl0847.11041
- Pedro Freitas, A Li-type criterion for zero-free half-planes of Riemann’s zeta function, J. London Math. Soc. (2) 73 (2006), 399-414 Zbl1102.11046
- S. Gelbart, S. D. Miller, Riemann’s zeta function and beyond, Bull. Amer. Math. Soc. 41 (2004), 59-112 Zbl1046.11001
- I. M. Gelfand, D. Kazhdan, Representation of the group where is a local field, Lie Groups and Their Representations (1974), 95-118, John Wiley & Sons, New York Zbl0348.22011
- R. Godement, H. Jacquet, Zeta fuctions of simple algebras, 260 (1972), Springer Verlag, Berlin Zbl0244.12011MR342495
- A. P. Guinand, Fourier reciprocities and the Riemann zeta-function, Proc. London Math. Soc. 51 (1949), 401-414 Zbl0039.11503MR31513
- S. Haran, Riesz potentials and explicit sums in arithmetic, Invent. Math. 101 (1990), 697-703 Zbl0788.11055MR1062801
- S. Haran, Index theory, potential theory and the Riemann hypothesis, -Functions and Arithmetic (1991), 257-270, Cambridge Univ. Press, Durham 1989 Zbl0744.11042MR1110396
- S. Haran, The Mysteries of the Real Prime, (2001), Oxford Univ. Press Zbl1014.11001MR1872029
- G. Ilies, Cramér functions and Guinand equations, Acta Arith. 105 (2002), 103-118 Zbl1020.11054MR1932761
- H. Iwaniec, E. Kowalski, Analytic Number Theory, (2004), Amer. Math. Soc., Providence, RI Zbl1059.11001MR2061214
- H. Iwaniec, P. Sarnak, Perspectives on the analytic theory of -functions, Geom. Funct. Anal. (2000), 705-741 Zbl0996.11036MR1826269
- H. Jacquet, Principal -functions of the linear group, Automorphic Forms, Representations and -Functions 33, part 2 (1979), 63-86, Amer. Math. Soc., Providence, RI Zbl0413.12007MR546609
- H. Jacquet, J. A. Shalika, On Euler products and the classification of automorphic representations I, Amer. J. Math. 103 (1981), 499-558 Zbl0473.12008MR618323
- J. Jorgenson, S. Lang, Guinand’s theorem and functional equations for the Cramér functions, J. Number Theory 86 (2001), 351-367 Zbl0993.11044
- J. Keiper, Power series expansions of Riemann’s -function, Math. Comp. 58 (1992), 765-773 Zbl0767.11039
- X.-J. Li, The positivity of a sequence of numbers and the Riemann hypothesis, J. Number Theory 65 (1997), 325-333 Zbl0884.11036MR1462847
- X.-J. Li, Explicit formulas for Dirichlet and Hecke -functions, Illinois J. Math 48 (2004), 491-503 Zbl1061.11048MR2085422
- X.-J. Li, An explicit formula for Hecke -functions, (2005)
- Xian-Jin Li, An arithmetic formula for certain coefficients of the Euler product of Hecke polynomials, J. Number Theory 113 (2005), 175-200 Zbl1142.11354MR2141763
- W.-Z. Luo, Z. Rudnick, P. Sarnak, On the generalized Ramanujan conjecture for , Automorphic forms, automorphic repesentations and arithmetic 66, part 2 (1999), 301-310, Amer. Math. Soc., Fort Worth, TX, 1996 Zbl0965.11023MR1703764
- Krzysztof Maślanka, Li’s criterion for the Riemann hypothesis—numerical approach, Opuscula Math. 24 (2004), 103-114 Zbl1136.11319
- S. J. Patterson, An introduction to the theory of the Riemann zeta function, (1988), Cambridge U. Press Zbl0641.10029MR933558
- Z. Rudnick, P. Sarnak, Zeros of principal -functions and random matrix theory, Duke Math. J. 81 (1996), 269-322 Zbl0866.11050MR1395406
- A. Voros, A sharpening of Li’s criterion for the Riemann hypothesis Zbl1181.11055
- A. Voros, Spectral zeta functions, Zeta Functions in Geometry 24 (1992), 327-358, Math. Soc. Japan Zbl0819.11033MR1210795
- A. Voros, Zeta functions for the Riemann zeros, Ann. Inst. Fourier 53 (2003), 665-699 Zbl1114.11077MR2008436
- A. Weil, Sur les ‘formules explicites’ de la théorie des nombres premiers (dédié à M. Riesz), Meddelanden Från Lunds Univ. Mat. Sem. (1952), 252-265 Zbl0049.03205
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.