Li coefficients for automorphic L -functions

Jeffrey C. Lagarias[1]

  • [1] University of Michigan Ann Arbor, MI 48109-1043 (USA)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 5, page 1689-1740
  • ISSN: 0373-0956

Abstract

top
Xian-Jin Li gave a criterion for the Riemann hypothesis in terms of the positivity of a set of coefficients λ n ( n = 1 , 2 , ... ) . We define similar coefficients λ n ( π ) associated to principal automorphic L -functions L ( s , π ) over G L ( N ) . We relate these cofficients to values of Weil’s quadratic functional associated to the representation π on a suitable set of test functions. The positivity of the real parts of these coefficients is a necessary and sufficient condition for the Riemann hypothesis for L ( s , π ) . Assuming the Riemann hypothesis for L ( s , π ) , we show that λ n ( π ) = N 2 n log n + C 1 ( π ) n + O ( n log n ) , where C 1 ( π ) is a real-valued constant. We construct an entire function F π ( z ) of exponential type that interpolates the generalized Li coefficients at integer values. Assuming the Riemann hypothesis for L ( s , π ) , this function on the real axis has a Fourier transform that is a tempered distribution whose support is a countable set in [ - π , π ] having 0 as its only limit point.

How to cite

top

Lagarias, Jeffrey C.. "Li coefficients for automorphic $L$-functions." Annales de l’institut Fourier 57.5 (2007): 1689-1740. <http://eudml.org/doc/10275>.

@article{Lagarias2007,
abstract = {Xian-Jin Li gave a criterion for the Riemann hypothesis in terms of the positivity of a set of coefficients $\lambda _n$$(n= 1, 2, \ldots )$. We define similar coefficients $\lambda _n(\pi )$ associated to principal automorphic $L$-functions $L(s, \pi )$ over $GL(N)$. We relate these cofficients to values of Weil’s quadratic functional associated to the representation $\pi $ on a suitable set of test functions. The positivity of the real parts of these coefficients is a necessary and sufficient condition for the Riemann hypothesis for $L(s, \pi )$. Assuming the Riemann hypothesis for $L(s, \pi )$, we show that $\lambda _n(\pi ) = \frac\{N\}\{2\} n \log n + C_1(\pi ) n + O (\sqrt\{n\}\log \{n\}),$ where $C_1(\pi )$ is a real-valued constant. We construct an entire function $F_\{\pi \}(z)$ of exponential type that interpolates the generalized Li coefficients at integer values. Assuming the Riemann hypothesis for $L(s, \pi )$, this function on the real axis has a Fourier transform that is a tempered distribution whose support is a countable set in $[-\pi , \pi ]$ having $0$ as its only limit point.},
affiliation = {University of Michigan Ann Arbor, MI 48109-1043 (USA)},
author = {Lagarias, Jeffrey C.},
journal = {Annales de l’institut Fourier},
keywords = {Automorphic $L$-function; zeta function; automorphic -function},
language = {eng},
number = {5},
pages = {1689-1740},
publisher = {Association des Annales de l’institut Fourier},
title = {Li coefficients for automorphic $L$-functions},
url = {http://eudml.org/doc/10275},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Lagarias, Jeffrey C.
TI - Li coefficients for automorphic $L$-functions
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 5
SP - 1689
EP - 1740
AB - Xian-Jin Li gave a criterion for the Riemann hypothesis in terms of the positivity of a set of coefficients $\lambda _n$$(n= 1, 2, \ldots )$. We define similar coefficients $\lambda _n(\pi )$ associated to principal automorphic $L$-functions $L(s, \pi )$ over $GL(N)$. We relate these cofficients to values of Weil’s quadratic functional associated to the representation $\pi $ on a suitable set of test functions. The positivity of the real parts of these coefficients is a necessary and sufficient condition for the Riemann hypothesis for $L(s, \pi )$. Assuming the Riemann hypothesis for $L(s, \pi )$, we show that $\lambda _n(\pi ) = \frac{N}{2} n \log n + C_1(\pi ) n + O (\sqrt{n}\log {n}),$ where $C_1(\pi )$ is a real-valued constant. We construct an entire function $F_{\pi }(z)$ of exponential type that interpolates the generalized Li coefficients at integer values. Assuming the Riemann hypothesis for $L(s, \pi )$, this function on the real axis has a Fourier transform that is a tempered distribution whose support is a countable set in $[-\pi , \pi ]$ having $0$ as its only limit point.
LA - eng
KW - Automorphic $L$-function; zeta function; automorphic -function
UR - http://eudml.org/doc/10275
ER -

References

top
  1. E. W. Barnes, On the expression of Euler’s constant as a definite integral, Messenger of Math. 33 (1903), 59-61 
  2. P. Biane, J. Pitman, M. Yor, Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions, Bull. Amer. Math. Soc. 38 (2001), 435-465 Zbl1040.11061MR1848256
  3. E. Bombieri, Remarks on Weil’s quadratic functional in the theory of prime numbers I, Rend. Mat. Acc. Lincei, Ser. IX 11 (2000), 183-233 Zbl1008.11034
  4. E. Bombieri, J. C. Lagarias, Complements to Li’s criterion for the Riemann hypothesis, J. Number Theory 77 (1999), 274-287 Zbl0972.11079
  5. F. C. S. Brown, Li’s criterion and zero-free regions of L -functions, J. Number Theory 111 (2005), 1-32 Zbl1154.11334
  6. J.-F. Burnol, The explicit formula in simple terms 
  7. J.-F. Burnol, Sur les Formules Explicites I : analyse invariante, C. R. Acad. Sci. Paris, Série I 331 (2000), 423-428 Zbl0992.11064MR1792480
  8. M. Coffey, Relations and positivity results for the derivatives of the Riemann ξ -function, J. Comput. Appl. Math. 166 (2004), 525-534 Zbl1107.11033MR2041196
  9. Mark W. Coffey, Toward verification of the Riemann hypothesis: application of the Li criterion, Math. Phys. Anal. Geom. 8 (2005), 211-255 Zbl1097.11042MR2177467
  10. J. Cogdell, Analytic theory of L -functions for G L n , An Introduction to the Langlands Program (2003), 197-228, BernsteinJ.J., Boston Zbl1111.11303MR1990380
  11. H. Cramér, Studien über die Nullstellen der Riemannschen Zetafunktion, Math. Zeitschr. 4 (1919), 104-130 Zbl47.0289.03MR1544354
  12. H. Davenport, Multiplicative Number Theory, (2000), Springer Verlag, New York Zbl0453.10002MR1790423
  13. C. Deninger, Local L -factors of motives and regularized determinants, Invent. Math. 107 (1992), 135-150 Zbl0762.14015MR1135468
  14. C. Deninger, Lefschetz trace formulas and explicit formulas in analytic number theory, J. Reine Angew. 441 (1993), 1-15 Zbl0782.11034MR1228608
  15. C. Deninger, Evidence for a cohomological approach to analytic number theory, First European Congress of Mathematics I (1994), 491-510, Birkhäuser, Paris, 1992 Zbl0838.11002MR1341834
  16. C. Deninger, Motivic L -functions and regularized determinants, Motives 55, part I (1994), 707-743, Amer. Math. Soc., Providence Zbl0816.14010MR1265547
  17. C. Deninger, Some analogies between number theory and dynamical systems on foliated spaces, Proc. Int. Cong. Math. I (1998), 163-186, Doc. Math., extra vol. 1, Berlin 1998 Zbl0899.14001MR1648030
  18. C. Deninger, On the nature of the ‘explicit formulas’ in analytic number theory–A simple example, Number Theoretic Methods 8 (2002), 97-118, Kluwer, Iizuka, 2001 Zbl1132.11347
  19. C. Deninger, M. Schröter, A distribution-theoretic proof of Guinand’s functional equation for Cramér’s V-function, J. Lond. Math. Soc. 52 (1995), 48-60 Zbl0847.11041
  20. Pedro Freitas, A Li-type criterion for zero-free half-planes of Riemann’s zeta function, J. London Math. Soc. (2) 73 (2006), 399-414 Zbl1102.11046
  21. S. Gelbart, S. D. Miller, Riemann’s zeta function and beyond, Bull. Amer. Math. Soc. 41 (2004), 59-112 Zbl1046.11001
  22. I. M. Gelfand, D. Kazhdan, Representation of the group G L ( n , K ) where K is a local field, Lie Groups and Their Representations (1974), 95-118, John Wiley & Sons, New York Zbl0348.22011
  23. R. Godement, H. Jacquet, Zeta fuctions of simple algebras, 260 (1972), Springer Verlag, Berlin Zbl0244.12011MR342495
  24. A. P. Guinand, Fourier reciprocities and the Riemann zeta-function, Proc. London Math. Soc. 51 (1949), 401-414 Zbl0039.11503MR31513
  25. S. Haran, Riesz potentials and explicit sums in arithmetic, Invent. Math. 101 (1990), 697-703 Zbl0788.11055MR1062801
  26. S. Haran, Index theory, potential theory and the Riemann hypothesis, -Functions and Arithmetic (1991), 257-270, Cambridge Univ. Press, Durham 1989 Zbl0744.11042MR1110396
  27. S. Haran, The Mysteries of the Real Prime, (2001), Oxford Univ. Press Zbl1014.11001MR1872029
  28. G. Ilies, Cramér functions and Guinand equations, Acta Arith. 105 (2002), 103-118 Zbl1020.11054MR1932761
  29. H. Iwaniec, E. Kowalski, Analytic Number Theory, (2004), Amer. Math. Soc., Providence, RI Zbl1059.11001MR2061214
  30. H. Iwaniec, P. Sarnak, Perspectives on the analytic theory of L -functions, Geom. Funct. Anal. (2000), 705-741 Zbl0996.11036MR1826269
  31. H. Jacquet, Principal L -functions of the linear group, Automorphic Forms, Representations and -Functions 33, part 2 (1979), 63-86, Amer. Math. Soc., Providence, RI Zbl0413.12007MR546609
  32. H. Jacquet, J. A. Shalika, On Euler products and the classification of automorphic representations I, Amer. J. Math. 103 (1981), 499-558 Zbl0473.12008MR618323
  33. J. Jorgenson, S. Lang, Guinand’s theorem and functional equations for the Cramér functions, J. Number Theory 86 (2001), 351-367 Zbl0993.11044
  34. J. Keiper, Power series expansions of Riemann’s ξ -function, Math. Comp. 58 (1992), 765-773 Zbl0767.11039
  35. X.-J. Li, The positivity of a sequence of numbers and the Riemann hypothesis, J. Number Theory 65 (1997), 325-333 Zbl0884.11036MR1462847
  36. X.-J. Li, Explicit formulas for Dirichlet and Hecke L -functions, Illinois J. Math 48 (2004), 491-503 Zbl1061.11048MR2085422
  37. X.-J. Li, An explicit formula for Hecke L -functions, (2005) 
  38. Xian-Jin Li, An arithmetic formula for certain coefficients of the Euler product of Hecke polynomials, J. Number Theory 113 (2005), 175-200 Zbl1142.11354MR2141763
  39. W.-Z. Luo, Z. Rudnick, P. Sarnak, On the generalized Ramanujan conjecture for G L ( n ) , Automorphic forms, automorphic repesentations and arithmetic 66, part 2 (1999), 301-310, Amer. Math. Soc., Fort Worth, TX, 1996 Zbl0965.11023MR1703764
  40. Krzysztof Maślanka, Li’s criterion for the Riemann hypothesis—numerical approach, Opuscula Math. 24 (2004), 103-114 Zbl1136.11319
  41. S. J. Patterson, An introduction to the theory of the Riemann zeta function, (1988), Cambridge U. Press Zbl0641.10029MR933558
  42. Z. Rudnick, P. Sarnak, Zeros of principal L -functions and random matrix theory, Duke Math. J. 81 (1996), 269-322 Zbl0866.11050MR1395406
  43. A. Voros, A sharpening of Li’s criterion for the Riemann hypothesis Zbl1181.11055
  44. A. Voros, Spectral zeta functions, Zeta Functions in Geometry 24 (1992), 327-358, Math. Soc. Japan Zbl0819.11033MR1210795
  45. A. Voros, Zeta functions for the Riemann zeros, Ann. Inst. Fourier 53 (2003), 665-699 Zbl1114.11077MR2008436
  46. A. Weil, Sur les ‘formules explicites’ de la théorie des nombres premiers (dédié à M. Riesz), Meddelanden Från Lunds Univ. Mat. Sem. (1952), 252-265 Zbl0049.03205

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.