A certain Dirichlet series attached to Siegel modular forms of degree two.
Lafforgue has proposed a new approach to the principle of functoriality in a test case, namely, the case of automorphic induction from an idele class character of a quadratic extension. For technical reasons, he considers only the case of function fields and assumes the data is unramified. In this paper, we show that his method applies without these restrictions. The ground field is a number field or a function field and the data may be ramified.
V článku motivujeme a vysvětlíme základy Langlandsova programu, sítě domněnek propojujících řadu různých oblastí matematiky. Během toho se také setkáme s Riemannovou hypotézou a domněnkou Birche a Swinnerton-Dyera, dvěma ze sedmi problémů tisíciletí vyhlášených Clayovým matematickým institutem.
Introduction. The vanishing orders of L-functions at the centers of their functional equations are interesting objects to study as one sees, for example, from the Birch-Swinnerton-Dyer conjecture on the Hasse-Weil L-functions associated with elliptic curves over number fields. In this paper we study the central zeros of the following types of L-functions: (i) the derivatives of the Mellin transforms of Hecke eigenforms for SL₂(ℤ), (ii) the Rankin-Selberg...