A minimal Set of Generators for the Ring of multisymmetric Functions
David Rydh[1]
- [1] KTH Department of Mathematics 100 44 Stockholm (Sweden)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 6, page 1741-1769
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topRydh, David. "A minimal Set of Generators for the Ring of multisymmetric Functions." Annales de l’institut Fourier 57.6 (2007): 1741-1769. <http://eudml.org/doc/10276>.
@article{Rydh2007,
abstract = {The purpose of this article is to give, for any (commutative) ring $A$, an explicit minimal set of generators for the ring of multisymmetric functions $\{\mathrm\{T\}S\}^d_A(A[x_1,\dots ,x_r])= \bigl (A[x_1,\dots ,x_r]^\{\otimes _A d\}\bigr )^\{\{\mathfrak\{S\}\}_d\}$ as an $A$-algebra. In characteristic zero, i.e. when $A$ is a $\{\mathbb\{Q\}\}$-algebra, a minimal set of generators has been known since the 19th century. A rather small generating set in the general case has also recently been given by Vaccarino but it is not minimal in general. We also give a sharp degree bound on the generators, improving the degree bound previously obtained by Fleischmann.As $\Gamma ^d_A(A[x_1,\dots ,x_r])=\{\mathrm\{T\}S\}^d_A(A[x_1,\dots ,x_r])$ we also obtain generators for divided powers algebras: If $B$ is a finitely generated $A$-algebra with a given surjection $A[x_1,x_2,\dots ,x_r]\rightarrow B$ then using the corresponding surjection $\Gamma ^d_A(A[x_1,\dots ,x_r])\rightarrow \Gamma ^d_A(B)$ we get generators for $\Gamma ^d_A(B)$.},
affiliation = {KTH Department of Mathematics 100 44 Stockholm (Sweden)},
author = {Rydh, David},
journal = {Annales de l’institut Fourier},
keywords = {Symmetric functions; generators; divided powers; vector invariants; multisymmetric functions},
language = {eng},
number = {6},
pages = {1741-1769},
publisher = {Association des Annales de l’institut Fourier},
title = {A minimal Set of Generators for the Ring of multisymmetric Functions},
url = {http://eudml.org/doc/10276},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Rydh, David
TI - A minimal Set of Generators for the Ring of multisymmetric Functions
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 6
SP - 1741
EP - 1769
AB - The purpose of this article is to give, for any (commutative) ring $A$, an explicit minimal set of generators for the ring of multisymmetric functions ${\mathrm{T}S}^d_A(A[x_1,\dots ,x_r])= \bigl (A[x_1,\dots ,x_r]^{\otimes _A d}\bigr )^{{\mathfrak{S}}_d}$ as an $A$-algebra. In characteristic zero, i.e. when $A$ is a ${\mathbb{Q}}$-algebra, a minimal set of generators has been known since the 19th century. A rather small generating set in the general case has also recently been given by Vaccarino but it is not minimal in general. We also give a sharp degree bound on the generators, improving the degree bound previously obtained by Fleischmann.As $\Gamma ^d_A(A[x_1,\dots ,x_r])={\mathrm{T}S}^d_A(A[x_1,\dots ,x_r])$ we also obtain generators for divided powers algebras: If $B$ is a finitely generated $A$-algebra with a given surjection $A[x_1,x_2,\dots ,x_r]\rightarrow B$ then using the corresponding surjection $\Gamma ^d_A(A[x_1,\dots ,x_r])\rightarrow \Gamma ^d_A(B)$ we get generators for $\Gamma ^d_A(B)$.
LA - eng
KW - Symmetric functions; generators; divided powers; vector invariants; multisymmetric functions
UR - http://eudml.org/doc/10276
ER -
References
top- Emmanuel Briand, When is the algebra of multisymmetric polynomials generated by the elementary multisymmetric polynomials?, Beiträge Algebra Geom. 45 (2004), 353-368 Zbl1062.05140MR2093171
- H. E. A. Campbell, I. Hughes, R. D. Pollack, Vector invariants of symmetric groups, Canad. Math. Bull. 33 (1990), 391-397 Zbl0695.14007MR1091341
- Pierre Deligne, Cohomologie à supports propres, exposé XVII of SGA 4, Théorie des topos et cohomologie étale des schémas. Tome 3 (1973), 250-480. Lecture Notes in Math., Vol. 305, Springer-Verlag, Berlin Zbl0255.14011MR354654
- Daniel Ferrand, Un foncteur norme, Bull. Soc. Math. France 126 (1998), 1-49 Zbl1017.13005MR1651380
- P. Fleischmann, A new degree bound for vector invariants of symmetric groups, Trans. Amer. Math. Soc. 350 (1998), 1703-1712 Zbl0891.13002MR1451600
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas, Inst. Hautes Études Sci. Publ. Math. (1964-67) Zbl0135.39701
- A. Grothendieck, J. L. Verdier, Prefaisceaux, exposé I of SGA 4, Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos (1972), 1-217. Lecture Notes in Math., Vol. 269, Springer-Verlag, Berlin Zbl0249.18021
- David Hilbert, Ueber die Theorie der algebraischen Formen, Math. Ann. 36 (1890), 473-534 Zbl22.0133.01MR1510634
- Fr. Junker, Die Relationen, welche zwischen den elementaren symmetrischen Functionen bestehen, Math. Ann. 38 (1891), 91-114 Zbl23.0156.02MR1510665
- Fr. Junker, Uber symmetrische Functionen von mehreren Reihen von Veränderlichen, Math. Ann. 43 (1893), 225-270 Zbl25.0230.01MR1510811
- Fr. Junker, Die symmetrischen Functionen und die Relationen zwischen den Elementarfunctionen derselben, Math. Ann. 45 (1894), 1-84 Zbl25.0230.02MR1510854
- Christian Lundkvist, Counterexamples regarding Symmetric Tensors and Divided Powers, Preprint (2007) Zbl1143.13009
- Masayoshi Nagata, On the normality of the Chow variety of positive -cycles of degree in an algebraic variety, Mem. Coll. Sci. Univ. Kyoto. Ser. A. Math. 29 (1955), 165-176 Zbl0066.14701MR96668
- Amnon Neeman, Zero cycles in , Adv. Math. 89 (1991), 217-227 Zbl0787.14004MR1128613
- Emmy Noether, Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann. 77 (1915), 89-92 Zbl45.0198.01MR1511848
- Emmy Noether, Der Endlichkeitssatz der Invarianten endlicher linearer Gruppen der Charakteristik , Nachr. Ges. Wiss. Göttingen (1926), 28-35 Zbl52.0106.01
- David R. Richman, Explicit generators of the invariants of finite groups, Adv. Math. 124 (1996), 49-76 Zbl0879.13003MR1423198
- Norbert Roby, Lois polynomes et lois formelles en théorie des modules, Ann. Sci. École Norm. Sup. (3) 80 (1963), 213-348 Zbl0117.02302MR161887
- Norbert Roby, Lois polynômes multiplicatives universelles, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), A869-A871 Zbl0471.13008MR580160
- David Rydh, Families of zero cycles and divided powers, (2007) Zbl1130.13005
- David Rydh, Hilbert and Chow schemes of points, symmetric products and divided powers, (2007) Zbl1130.13005
- Ludwig Schläfli, Über die Resultante eines systemes mehrerer algebraischen Gleichungen, Denkschr. Kais. Akad. Wiss. Math.-Natur. Kl. 4 (1852), 9-112
- Francesco Vaccarino, The ring of multisymmetric functions, Ann. Inst. Fourier (Grenoble) 55 (2005), 717-731 Zbl1062.05143MR2149400
- Heinrich Weber, Lehrbuch der Algebra, 2 (1899), Braunschweig, Berlin
- Hermann Weyl, The Classical Groups. Their Invariants and Representations, (1939), Princeton University Press, Princeton, N.J. Zbl1024.20502MR1488158
- Dieter Ziplies, Generators for the divided powers algebra of an algebra and trace identities, Beiträge Algebra Geom. (1987), 9-27 Zbl0632.16004MR888200
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.