A minimal Set of Generators for the Ring of multisymmetric Functions

David Rydh[1]

  • [1] KTH Department of Mathematics 100 44 Stockholm (Sweden)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 6, page 1741-1769
  • ISSN: 0373-0956

Abstract

top
The purpose of this article is to give, for any (commutative) ring A , an explicit minimal set of generators for the ring of multisymmetric functions T S A d ( A [ x 1 , , x r ] ) = A [ x 1 , , x r ] A d 𝔖 d as an A -algebra. In characteristic zero, i.e. when A is a -algebra, a minimal set of generators has been known since the 19th century. A rather small generating set in the general case has also recently been given by Vaccarino but it is not minimal in general. We also give a sharp degree bound on the generators, improving the degree bound previously obtained by Fleischmann.As Γ A d ( A [ x 1 , , x r ] ) = T S A d ( A [ x 1 , , x r ] ) we also obtain generators for divided powers algebras: If B is a finitely generated A -algebra with a given surjection A [ x 1 , x 2 , , x r ] B then using the corresponding surjection Γ A d ( A [ x 1 , , x r ] ) Γ A d ( B ) we get generators for Γ A d ( B ) .

How to cite

top

Rydh, David. "A minimal Set of Generators for the Ring of multisymmetric Functions." Annales de l’institut Fourier 57.6 (2007): 1741-1769. <http://eudml.org/doc/10276>.

@article{Rydh2007,
abstract = {The purpose of this article is to give, for any (commutative) ring $A$, an explicit minimal set of generators for the ring of multisymmetric functions $\{\mathrm\{T\}S\}^d_A(A[x_1,\dots ,x_r])= \bigl (A[x_1,\dots ,x_r]^\{\otimes _A d\}\bigr )^\{\{\mathfrak\{S\}\}_d\}$ as an $A$-algebra. In characteristic zero, i.e. when $A$ is a $\{\mathbb\{Q\}\}$-algebra, a minimal set of generators has been known since the 19th century. A rather small generating set in the general case has also recently been given by Vaccarino but it is not minimal in general. We also give a sharp degree bound on the generators, improving the degree bound previously obtained by Fleischmann.As $\Gamma ^d_A(A[x_1,\dots ,x_r])=\{\mathrm\{T\}S\}^d_A(A[x_1,\dots ,x_r])$ we also obtain generators for divided powers algebras: If $B$ is a finitely generated $A$-algebra with a given surjection $A[x_1,x_2,\dots ,x_r]\rightarrow B$ then using the corresponding surjection $\Gamma ^d_A(A[x_1,\dots ,x_r])\rightarrow \Gamma ^d_A(B)$ we get generators for $\Gamma ^d_A(B)$.},
affiliation = {KTH Department of Mathematics 100 44 Stockholm (Sweden)},
author = {Rydh, David},
journal = {Annales de l’institut Fourier},
keywords = {Symmetric functions; generators; divided powers; vector invariants; multisymmetric functions},
language = {eng},
number = {6},
pages = {1741-1769},
publisher = {Association des Annales de l’institut Fourier},
title = {A minimal Set of Generators for the Ring of multisymmetric Functions},
url = {http://eudml.org/doc/10276},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Rydh, David
TI - A minimal Set of Generators for the Ring of multisymmetric Functions
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 6
SP - 1741
EP - 1769
AB - The purpose of this article is to give, for any (commutative) ring $A$, an explicit minimal set of generators for the ring of multisymmetric functions ${\mathrm{T}S}^d_A(A[x_1,\dots ,x_r])= \bigl (A[x_1,\dots ,x_r]^{\otimes _A d}\bigr )^{{\mathfrak{S}}_d}$ as an $A$-algebra. In characteristic zero, i.e. when $A$ is a ${\mathbb{Q}}$-algebra, a minimal set of generators has been known since the 19th century. A rather small generating set in the general case has also recently been given by Vaccarino but it is not minimal in general. We also give a sharp degree bound on the generators, improving the degree bound previously obtained by Fleischmann.As $\Gamma ^d_A(A[x_1,\dots ,x_r])={\mathrm{T}S}^d_A(A[x_1,\dots ,x_r])$ we also obtain generators for divided powers algebras: If $B$ is a finitely generated $A$-algebra with a given surjection $A[x_1,x_2,\dots ,x_r]\rightarrow B$ then using the corresponding surjection $\Gamma ^d_A(A[x_1,\dots ,x_r])\rightarrow \Gamma ^d_A(B)$ we get generators for $\Gamma ^d_A(B)$.
LA - eng
KW - Symmetric functions; generators; divided powers; vector invariants; multisymmetric functions
UR - http://eudml.org/doc/10276
ER -

References

top
  1. Emmanuel Briand, When is the algebra of multisymmetric polynomials generated by the elementary multisymmetric polynomials?, Beiträge Algebra Geom. 45 (2004), 353-368 Zbl1062.05140MR2093171
  2. H. E. A. Campbell, I. Hughes, R. D. Pollack, Vector invariants of symmetric groups, Canad. Math. Bull. 33 (1990), 391-397 Zbl0695.14007MR1091341
  3. Pierre Deligne, Cohomologie à supports propres, exposé XVII of SGA 4, Théorie des topos et cohomologie étale des schémas. Tome 3 (1973), 250-480. Lecture Notes in Math., Vol. 305, Springer-Verlag, Berlin Zbl0255.14011MR354654
  4. Daniel Ferrand, Un foncteur norme, Bull. Soc. Math. France 126 (1998), 1-49 Zbl1017.13005MR1651380
  5. P. Fleischmann, A new degree bound for vector invariants of symmetric groups, Trans. Amer. Math. Soc. 350 (1998), 1703-1712 Zbl0891.13002MR1451600
  6. A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas, Inst. Hautes Études Sci. Publ. Math. (1964-67) Zbl0135.39701
  7. A. Grothendieck, J. L. Verdier, Prefaisceaux, exposé I of SGA 4, Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos (1972), 1-217. Lecture Notes in Math., Vol. 269, Springer-Verlag, Berlin Zbl0249.18021
  8. David Hilbert, Ueber die Theorie der algebraischen Formen, Math. Ann. 36 (1890), 473-534 Zbl22.0133.01MR1510634
  9. Fr. Junker, Die Relationen, welche zwischen den elementaren symmetrischen Functionen bestehen, Math. Ann. 38 (1891), 91-114 Zbl23.0156.02MR1510665
  10. Fr. Junker, Uber symmetrische Functionen von mehreren Reihen von Veränderlichen, Math. Ann. 43 (1893), 225-270 Zbl25.0230.01MR1510811
  11. Fr. Junker, Die symmetrischen Functionen und die Relationen zwischen den Elementarfunctionen derselben, Math. Ann. 45 (1894), 1-84 Zbl25.0230.02MR1510854
  12. Christian Lundkvist, Counterexamples regarding Symmetric Tensors and Divided Powers, Preprint (2007) Zbl1143.13009
  13. Masayoshi Nagata, On the normality of the Chow variety of positive 0 -cycles of degree m in an algebraic variety, Mem. Coll. Sci. Univ. Kyoto. Ser. A. Math. 29 (1955), 165-176 Zbl0066.14701MR96668
  14. Amnon Neeman, Zero cycles in n , Adv. Math. 89 (1991), 217-227 Zbl0787.14004MR1128613
  15. Emmy Noether, Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann. 77 (1915), 89-92 Zbl45.0198.01MR1511848
  16. Emmy Noether, Der Endlichkeitssatz der Invarianten endlicher linearer Gruppen der Charakteristik p , Nachr. Ges. Wiss. Göttingen (1926), 28-35 Zbl52.0106.01
  17. David R. Richman, Explicit generators of the invariants of finite groups, Adv. Math. 124 (1996), 49-76 Zbl0879.13003MR1423198
  18. Norbert Roby, Lois polynomes et lois formelles en théorie des modules, Ann. Sci. École Norm. Sup. (3) 80 (1963), 213-348 Zbl0117.02302MR161887
  19. Norbert Roby, Lois polynômes multiplicatives universelles, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), A869-A871 Zbl0471.13008MR580160
  20. David Rydh, Families of zero cycles and divided powers, (2007) Zbl1130.13005
  21. David Rydh, Hilbert and Chow schemes of points, symmetric products and divided powers, (2007) Zbl1130.13005
  22. Ludwig Schläfli, Über die Resultante eines systemes mehrerer algebraischen Gleichungen, Denkschr. Kais. Akad. Wiss. Math.-Natur. Kl. 4 (1852), 9-112 
  23. Francesco Vaccarino, The ring of multisymmetric functions, Ann. Inst. Fourier (Grenoble) 55 (2005), 717-731 Zbl1062.05143MR2149400
  24. Heinrich Weber, Lehrbuch der Algebra, 2 (1899), Braunschweig, Berlin 
  25. Hermann Weyl, The Classical Groups. Their Invariants and Representations, (1939), Princeton University Press, Princeton, N.J. Zbl1024.20502MR1488158
  26. Dieter Ziplies, Generators for the divided powers algebra of an algebra and trace identities, Beiträge Algebra Geom. (1987), 9-27 Zbl0632.16004MR888200

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.