The ring of multisymmetric functions
- [1] Politecnico di Torino, dipartimento di Matematica, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)
Annales de l’institut Fourier (2005)
- Volume: 55, Issue: 3, page 717-731
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topVaccarino, Francesco. "The ring of multisymmetric functions." Annales de l’institut Fourier 55.3 (2005): 717-731. <http://eudml.org/doc/116205>.
@article{Vaccarino2005,
	abstract = {We give a presentation (in terms of generators and relations) of the ring of
multisymmetric functions that holds for any commutative ring $R$, thereby answering a
classical question coming from works of F. Junker [J1, J2, J3] in the late nineteen
century and then implicitly in H. Weyl book “The classical groups” [W].},
	affiliation = {Politecnico di Torino, dipartimento di Matematica, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)},
	author = {Vaccarino, Francesco},
	journal = {Annales de l’institut Fourier},
	keywords = {invariants theory; symmetric functions; representations of symmetric groups; invariant theory},
	language = {eng},
	number = {3},
	pages = {717-731},
	publisher = {Association des Annales de l'Institut Fourier},
	title = {The ring of multisymmetric functions},
	url = {http://eudml.org/doc/116205},
	volume = {55},
	year = {2005},
}
TY  - JOUR
AU  - Vaccarino, Francesco
TI  - The ring of multisymmetric functions
JO  - Annales de l’institut Fourier
PY  - 2005
PB  - Association des Annales de l'Institut Fourier
VL  - 55
IS  - 3
SP  - 717
EP  - 731
AB  - We give a presentation (in terms of generators and relations) of the ring of
multisymmetric functions that holds for any commutative ring $R$, thereby answering a
classical question coming from works of F. Junker [J1, J2, J3] in the late nineteen
century and then implicitly in H. Weyl book “The classical groups” [W].
LA  - eng
KW  - invariants theory; symmetric functions; representations of symmetric groups; invariant theory
UR  - http://eudml.org/doc/116205
ER  - 
References
top- M. Feschbach, The mod 2 cohomology rings of the symmetric groups and invariants, Topology (2002), 57-84 Zbl1039.20029MR1871241
- N. Bourbaki, Elements of mathematics - Algebra II Chapters 4-7, (1988), Springer-Verlag, Berlin Zbl1139.12001MR1080964
- J. Dalbec, Multisymmetric functions, Beiträge Algebra Geom. 40 (1999), 27-51 Zbl0953.05077MR1678567
- P. Fleischmann, A new degree bound for vector invariants of symmetric groups, Trans. Am. Math. Soc. 350 (1998), 1703-1712 Zbl0891.13002MR1451600
- I. Gelfand, M. Kapranov, A. Zelevinsky, Discriminants, resultants and multidimensional determinants, (1994), Birkahuser, Boston Zbl0827.14036MR1264417
- F. Junker, Die Relationen, welche zwischen den elementaren symmetrischen Functionen bestehen, Math. Ann. 38 (1891), 91-114 Zbl23.0156.02MR1510665
- F. Junker, Über symmetrische Functionen von mehreren Reihen von Veränderlichen, Math. Ann. 43 (1893), 225-270 Zbl25.0230.01MR1510811
- F. Junker, Die symmetrische Functionen und die Relationen zwischen den Elementarfunctionen derselben, Math. Ann. 45 (1894), 1-84 Zbl25.0230.02MR1510854
- I.G. Macdonald, Symmetric Functions and Hall Polynomials - second edition, Oxford mathematical monograph (1995) Zbl0487.20007MR1354144
- H. Weyl, The classical groups, (1946), Princeton University Press, Princeton N.J. Zbl0020.20601MR1488158
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 