New models for the action of Hecke operators in spaces of Maass wave forms
Ian Kiming[1]
- [1] University of Copenhagen Department of Mathematics Universitetsparken 5 2100 Copenhagen Ø (Denmark)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 6, page 1863-1882
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKiming, Ian. "New models for the action of Hecke operators in spaces of Maass wave forms." Annales de l’institut Fourier 57.6 (2007): 1863-1882. <http://eudml.org/doc/10280>.
@article{Kiming2007,
abstract = {Utilizing the theory of the Poisson transform, we develop some new concrete models for the Hecke theory in a space $M_\{\lambda \}(N)$ of Maass forms with eigenvalue $1/4-\lambda ^2$ on a congruence subgroup $\Gamma _1(N)$. We introduce the field $F_\{\lambda \} = \mathbb\{Q\} (\lambda ,\sqrt\{n\} , n^\{\lambda /2\} \mid ~n\in \mathbb\{N\} )$ so that $F_\{\lambda \}$ consists entirely of algebraic numbers if $\lambda = 0$.The main result of the paper is the following. For a packet $\Phi = (\nu _p \mid p\nmid N)$ of Hecke eigenvalues occurring in $M_\{\lambda \}(N)$ we then have that either every $\nu _p$ is algebraic over $F_\{\lambda \}$, or else $\Phi $ will – for some $m\in \mathbb\{N\}$ – occur in the first cohomology of a certain space $W_\{\lambda ,m\}$ which is a space of continuous functions on the unit circle with an action of $\mathrm\{SL\}_2(\{\mathbb\{R\}\})$ well-known from the theory of (non-unitary) principal representations of $\mathrm\{SL\}_2(\{\mathbb\{R\}\})$.},
affiliation = {University of Copenhagen Department of Mathematics Universitetsparken 5 2100 Copenhagen Ø (Denmark)},
author = {Kiming, Ian},
journal = {Annales de l’institut Fourier},
keywords = {Maass wave forms; Hecke operators; Hecke eigenvalues; Poisson transform},
language = {eng},
number = {6},
pages = {1863-1882},
publisher = {Association des Annales de l’institut Fourier},
title = {New models for the action of Hecke operators in spaces of Maass wave forms},
url = {http://eudml.org/doc/10280},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Kiming, Ian
TI - New models for the action of Hecke operators in spaces of Maass wave forms
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 6
SP - 1863
EP - 1882
AB - Utilizing the theory of the Poisson transform, we develop some new concrete models for the Hecke theory in a space $M_{\lambda }(N)$ of Maass forms with eigenvalue $1/4-\lambda ^2$ on a congruence subgroup $\Gamma _1(N)$. We introduce the field $F_{\lambda } = \mathbb{Q} (\lambda ,\sqrt{n} , n^{\lambda /2} \mid ~n\in \mathbb{N} )$ so that $F_{\lambda }$ consists entirely of algebraic numbers if $\lambda = 0$.The main result of the paper is the following. For a packet $\Phi = (\nu _p \mid p\nmid N)$ of Hecke eigenvalues occurring in $M_{\lambda }(N)$ we then have that either every $\nu _p$ is algebraic over $F_{\lambda }$, or else $\Phi $ will – for some $m\in \mathbb{N}$ – occur in the first cohomology of a certain space $W_{\lambda ,m}$ which is a space of continuous functions on the unit circle with an action of $\mathrm{SL}_2({\mathbb{R}})$ well-known from the theory of (non-unitary) principal representations of $\mathrm{SL}_2({\mathbb{R}})$.
LA - eng
KW - Maass wave forms; Hecke operators; Hecke eigenvalues; Poisson transform
UR - http://eudml.org/doc/10280
ER -
References
top- A. Ash, G. Stevens, Cohomology of arithmetic groups and congruences between systems of Hecke eigenvalues, J. Reine Angew. Math. 365 (1990), 192-220 Zbl0596.10026MR826158
- D. Blasius, L. Clozel, D. Ramakrishnan, Algébricité de l’action des opérateurs de Hecke sur certaines formes de Maass, C. R. Acad. Sci. Paris 305 (1987), 705-708 Zbl0628.10035
- D. Blasius, L. Clozel, D. Ramakrishnan, Opérateurs de Hecke et formes de Maass: application de formule des traces, C. R. Acad. Sci. Paris 306 (1988), 59-62 Zbl0639.10020MR929109
- U. Bunke, M. Olbrich, Cohomological properties of the smooth globalization of a Harish-Chandra module, Preprint (1995)
- U. Bunke, M. Olbrich, Fuchsian groups of the second kind and representations carried by the limit set, Invent. math. 127 (1996), 127-154 Zbl0880.30035MR1423028
- M. Flensted-Jensen, Analysis on non-Riemannian symmetric spaces, CBMS Regional Conference Series in Mathematics 61 (1986), AMS Zbl0589.43008MR837420
- G. Henniart, Erratum à l’exposé No. 711, Astérisque 201–203 (1991), 485-486 Zbl0748.11057
- H. Maaß, Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 121 (1949), 141-183 Zbl0033.11702MR31519
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.