New models for the action of Hecke operators in spaces of Maass wave forms

Ian Kiming[1]

  • [1] University of Copenhagen Department of Mathematics Universitetsparken 5 2100 Copenhagen Ø (Denmark)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 6, page 1863-1882
  • ISSN: 0373-0956

Abstract

top
Utilizing the theory of the Poisson transform, we develop some new concrete models for the Hecke theory in a space M λ ( N ) of Maass forms with eigenvalue 1 / 4 - λ 2 on a congruence subgroup Γ 1 ( N ) . We introduce the field F λ = ( λ , n , n λ / 2 n ) so that F λ consists entirely of algebraic numbers if λ = 0 .The main result of the paper is the following. For a packet Φ = ( ν p p N ) of Hecke eigenvalues occurring in M λ ( N ) we then have that either every ν p is algebraic over F λ , or else Φ will – for some m – occur in the first cohomology of a certain space W λ , m which is a space of continuous functions on the unit circle with an action of SL 2 ( ) well-known from the theory of (non-unitary) principal representations of SL 2 ( ) .

How to cite

top

Kiming, Ian. "New models for the action of Hecke operators in spaces of Maass wave forms." Annales de l’institut Fourier 57.6 (2007): 1863-1882. <http://eudml.org/doc/10280>.

@article{Kiming2007,
abstract = {Utilizing the theory of the Poisson transform, we develop some new concrete models for the Hecke theory in a space $M_\{\lambda \}(N)$ of Maass forms with eigenvalue $1/4-\lambda ^2$ on a congruence subgroup $\Gamma _1(N)$. We introduce the field $F_\{\lambda \} = \mathbb\{Q\} (\lambda ,\sqrt\{n\} , n^\{\lambda /2\} \mid ~n\in \mathbb\{N\} )$ so that $F_\{\lambda \}$ consists entirely of algebraic numbers if $\lambda = 0$.The main result of the paper is the following. For a packet $\Phi = (\nu _p \mid p\nmid N)$ of Hecke eigenvalues occurring in $M_\{\lambda \}(N)$ we then have that either every $\nu _p$ is algebraic over $F_\{\lambda \}$, or else $\Phi $ will – for some $m\in \mathbb\{N\}$ – occur in the first cohomology of a certain space $W_\{\lambda ,m\}$ which is a space of continuous functions on the unit circle with an action of $\mathrm\{SL\}_2(\{\mathbb\{R\}\})$ well-known from the theory of (non-unitary) principal representations of $\mathrm\{SL\}_2(\{\mathbb\{R\}\})$.},
affiliation = {University of Copenhagen Department of Mathematics Universitetsparken 5 2100 Copenhagen Ø (Denmark)},
author = {Kiming, Ian},
journal = {Annales de l’institut Fourier},
keywords = {Maass wave forms; Hecke operators; Hecke eigenvalues; Poisson transform},
language = {eng},
number = {6},
pages = {1863-1882},
publisher = {Association des Annales de l’institut Fourier},
title = {New models for the action of Hecke operators in spaces of Maass wave forms},
url = {http://eudml.org/doc/10280},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Kiming, Ian
TI - New models for the action of Hecke operators in spaces of Maass wave forms
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 6
SP - 1863
EP - 1882
AB - Utilizing the theory of the Poisson transform, we develop some new concrete models for the Hecke theory in a space $M_{\lambda }(N)$ of Maass forms with eigenvalue $1/4-\lambda ^2$ on a congruence subgroup $\Gamma _1(N)$. We introduce the field $F_{\lambda } = \mathbb{Q} (\lambda ,\sqrt{n} , n^{\lambda /2} \mid ~n\in \mathbb{N} )$ so that $F_{\lambda }$ consists entirely of algebraic numbers if $\lambda = 0$.The main result of the paper is the following. For a packet $\Phi = (\nu _p \mid p\nmid N)$ of Hecke eigenvalues occurring in $M_{\lambda }(N)$ we then have that either every $\nu _p$ is algebraic over $F_{\lambda }$, or else $\Phi $ will – for some $m\in \mathbb{N}$ – occur in the first cohomology of a certain space $W_{\lambda ,m}$ which is a space of continuous functions on the unit circle with an action of $\mathrm{SL}_2({\mathbb{R}})$ well-known from the theory of (non-unitary) principal representations of $\mathrm{SL}_2({\mathbb{R}})$.
LA - eng
KW - Maass wave forms; Hecke operators; Hecke eigenvalues; Poisson transform
UR - http://eudml.org/doc/10280
ER -

References

top
  1. A. Ash, G. Stevens, Cohomology of arithmetic groups and congruences between systems of Hecke eigenvalues, J. Reine Angew. Math. 365 (1990), 192-220 Zbl0596.10026MR826158
  2. D. Blasius, L. Clozel, D. Ramakrishnan, Algébricité de l’action des opérateurs de Hecke sur certaines formes de Maass, C. R. Acad. Sci. Paris 305 (1987), 705-708 Zbl0628.10035
  3. D. Blasius, L. Clozel, D. Ramakrishnan, Opérateurs de Hecke et formes de Maass: application de formule des traces, C. R. Acad. Sci. Paris 306 (1988), 59-62 Zbl0639.10020MR929109
  4. U. Bunke, M. Olbrich, Cohomological properties of the smooth globalization of a Harish-Chandra module, Preprint (1995) 
  5. U. Bunke, M. Olbrich, Fuchsian groups of the second kind and representations carried by the limit set, Invent. math. 127 (1996), 127-154 Zbl0880.30035MR1423028
  6. M. Flensted-Jensen, Analysis on non-Riemannian symmetric spaces, CBMS Regional Conference Series in Mathematics 61 (1986), AMS Zbl0589.43008MR837420
  7. G. Henniart, Erratum à l’exposé No. 711, Astérisque 201–203 (1991), 485-486 Zbl0748.11057
  8. H. Maaß, Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 121 (1949), 141-183 Zbl0033.11702MR31519

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.