On nodal sets and nodal domains on S 2 and 2

Alexandre Eremenko[1]; Dmitry Jakobson[2]; Nikolai Nadirashvili[3]

  • [1] Purdue University Mathematics Department 150 N University Street West Lafayette, IN 47907-2067 (USA)
  • [2] McGill University Department of Mathematics and Statistics 805 Sherbrooke Str.West Montreal, QC H3A 2K6 (Canada)
  • [3] Université de Provence Laboratoire d’Analyse, Topologie, Probabilités UMR 6632 Centre de Mathématiques et Informatique 39 rue F.Joliot-Curie 13453 Marseille Cedex 13 (France)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 7, page 2345-2360
  • ISSN: 0373-0956

Abstract

top
We discuss possible topological configurations of nodal sets, in particular the number of their components, for spherical harmonics on S 2 . We also construct a solution of the equation Δ u = u in 2 that has only two nodal domains. This equation arises in the study of high energy eigenfunctions.

How to cite

top

Eremenko, Alexandre, Jakobson, Dmitry, and Nadirashvili, Nikolai. "On nodal sets and nodal domains on $\mathbf{S^2}$ and ${\mathbb{R}}^{\mathbf{2}}$." Annales de l’institut Fourier 57.7 (2007): 2345-2360. <http://eudml.org/doc/10299>.

@article{Eremenko2007,
abstract = {We discuss possible topological configurations of nodal sets, in particular the number of their components, for spherical harmonics on $S^2$. We also construct a solution of the equation $\Delta u=u$ in $\{\mathbb\{R\}\}^2$ that has only two nodal domains. This equation arises in the study of high energy eigenfunctions.},
affiliation = {Purdue University Mathematics Department 150 N University Street West Lafayette, IN 47907-2067 (USA); McGill University Department of Mathematics and Statistics 805 Sherbrooke Str.West Montreal, QC H3A 2K6 (Canada); Université de Provence Laboratoire d’Analyse, Topologie, Probabilités UMR 6632 Centre de Mathématiques et Informatique 39 rue F.Joliot-Curie 13453 Marseille Cedex 13 (France)},
author = {Eremenko, Alexandre, Jakobson, Dmitry, Nadirashvili, Nikolai},
journal = {Annales de l’institut Fourier},
keywords = {Laplacian; nodal sets; nodal domains; spherical harmonic; topological configuration},
language = {eng},
number = {7},
pages = {2345-2360},
publisher = {Association des Annales de l’institut Fourier},
title = {On nodal sets and nodal domains on $\mathbf\{S^2\}$ and $\{\mathbb\{R\}\}^\{\mathbf\{2\}\}$},
url = {http://eudml.org/doc/10299},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Eremenko, Alexandre
AU - Jakobson, Dmitry
AU - Nadirashvili, Nikolai
TI - On nodal sets and nodal domains on $\mathbf{S^2}$ and ${\mathbb{R}}^{\mathbf{2}}$
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 7
SP - 2345
EP - 2360
AB - We discuss possible topological configurations of nodal sets, in particular the number of their components, for spherical harmonics on $S^2$. We also construct a solution of the equation $\Delta u=u$ in ${\mathbb{R}}^2$ that has only two nodal domains. This equation arises in the study of high energy eigenfunctions.
LA - eng
KW - Laplacian; nodal sets; nodal domains; spherical harmonic; topological configuration
UR - http://eudml.org/doc/10299
ER -

References

top
  1. V. Arnold, M. Vishik, Y. Ilyashenko, A. Kalashnikovand V. Kondratyev, S. Kruzhkov, E. Landis, V. Millionshchikov, O. Oleinik, A. Filippov, M. Shubin, Some unsolved problems in the theory of differential equations and mathematical physics, Uspekhi Mat. Nauk 44 (1989), 191-202 Zbl0703.35002MR1023106
  2. R. Courant, D. Hilbert, Methods of Mathematical Physics, I, (1953), Interscience Publishers, New York Zbl0051.28802MR65391
  3. A. Eremenko, A. Gabrielov, Rational functions with real critical points and the B. and M.Shapiro Conjecture in real algebraic geometry, Annals of Math. 155 (2002), 105-129 Zbl0997.14015MR1888795
  4. D. Gudkov, The topology of real projective algebraic varieties, Uspehi Mat. Nauk 178 (1974), 3-79 Zbl0316.14018MR399085
  5. D. Jakobson, N. Nadirashvili, J. Toth, Geometric properties of eigenfunctions, Russian Math. Surveys 56 (2001), 67-88 Zbl1060.58019MR1886720
  6. V. N. Karpushkin, Topology of zeros of eigenfunctions, Funct. Anal. Appl. 23 (1989), 218-220 Zbl0705.47042MR1026990
  7. V. N. Karpushkin, The number of components of the complement of the level surface of a harmonic polynomial in three variables, Funct. Anal. Appl. 28 (1994), 116-118 Zbl0846.57028MR1283253
  8. V. N. Karpushkin, On the number of components of the complement to some algebraic curves, Russian Math. Surveys 57 (2002), 1228-1229 Zbl1049.14043MR1991874
  9. S. Lando, A. Zvonkin, Graphs on surfaces and their applications. With an appendix by Don B. Zagier, Low-Dimensional Topology, II, Encyclopaedia of Mathematical Sciences 141 (2004), Springer-Verlag, Berlin Zbl1040.05001MR2036721
  10. H. Lewy, On the minimum number of domains in which the nodal lines of spherical harmonics divide the sphere, Comm. PDE, 2 (1977), 1233-1244 Zbl0377.31008MR477199
  11. J. Leydold, On the number of nodal domains of spherical harmonics, Topology 35 (1996), 301-321 Zbl0853.33012MR1380499
  12. J. Neuheisel, Asymptotic distribution of nodal sets on spheres, (1994) 
  13. A. Pleijel, Remarks on Courant’s nodal line theorem, Comm. Pure Appl. Math 9 (1956), 543-550 Zbl0070.32604
  14. F. Santos, Optimal degree construction of real algebraic plane nodal curves with prescribed topology. I. The orientable case. Real algebraic and analytic geometry (Segovia, 1995), Rev. Mat. Univ. Complut. Madrid 10 (1997), 291-310 Zbl0949.14036MR1485306
  15. J. Segura, Bounds on differences of adjacent zeros of Bessel functions and iterative relations between consecutive zeros, Math. Comp. 70 (2001), 1205-1220 Zbl0983.33004MR1710198
  16. A. Tikhonov, A. Samarskii, Equations of Mathematical Physics, (1953), Moscow Zbl0044.09302
  17. O. Viro, Real algebraic plane curves: constructions with controlled topology, Leningrad Math. J. 1 (1990), 1059-1134 Zbl0732.14026MR1036837

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.