Actions of finitely generated groups on -trees

Vincent Guirardel[1]

  • [1] Université Paul Sabatier Institut de Mathématiques de Toulouse, UMR 5219 31062 Toulouse cedex 9 (France)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 1, page 159-211
  • ISSN: 0373-0956

Abstract

top
We study actions of finitely generated groups on -trees under some stability hypotheses. We prove that either the group splits over some controlled subgroup (fixing an arc in particular), or the action can be obtained by gluing together actions of simple types: actions on simplicial trees, actions on lines, and actions coming from measured foliations on 2 -orbifolds. This extends results by Sela and Rips-Sela. However, their results are misstated, and we give a counterexample to their statements.The proof relies on an extended version of Scott’s Lemma of independent interest. This statement claims that if a group G is a direct limit of groups having suitably compatible splittings, then G splits.

How to cite

top

Guirardel, Vincent. "Actions of finitely generated groups on $\mathbb{R}$-trees." Annales de l’institut Fourier 58.1 (2008): 159-211. <http://eudml.org/doc/10308>.

@article{Guirardel2008,
abstract = {We study actions of finitely generated groups on $\mathbb\{R\}$-trees under some stability hypotheses. We prove that either the group splits over some controlled subgroup (fixing an arc in particular), or the action can be obtained by gluing together actions of simple types: actions on simplicial trees, actions on lines, and actions coming from measured foliations on $2$-orbifolds. This extends results by Sela and Rips-Sela. However, their results are misstated, and we give a counterexample to their statements.The proof relies on an extended version of Scott’s Lemma of independent interest. This statement claims that if a group $G$ is a direct limit of groups having suitably compatible splittings, then $G$ splits.},
affiliation = {Université Paul Sabatier Institut de Mathématiques de Toulouse, UMR 5219 31062 Toulouse cedex 9 (France)},
author = {Guirardel, Vincent},
journal = {Annales de l’institut Fourier},
keywords = {R-tree; splitting of group; Rips theory; -trees; splittings of groups},
language = {eng},
number = {1},
pages = {159-211},
publisher = {Association des Annales de l’institut Fourier},
title = {Actions of finitely generated groups on $\mathbb\{R\}$-trees},
url = {http://eudml.org/doc/10308},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Guirardel, Vincent
TI - Actions of finitely generated groups on $\mathbb{R}$-trees
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 1
SP - 159
EP - 211
AB - We study actions of finitely generated groups on $\mathbb{R}$-trees under some stability hypotheses. We prove that either the group splits over some controlled subgroup (fixing an arc in particular), or the action can be obtained by gluing together actions of simple types: actions on simplicial trees, actions on lines, and actions coming from measured foliations on $2$-orbifolds. This extends results by Sela and Rips-Sela. However, their results are misstated, and we give a counterexample to their statements.The proof relies on an extended version of Scott’s Lemma of independent interest. This statement claims that if a group $G$ is a direct limit of groups having suitably compatible splittings, then $G$ splits.
LA - eng
KW - R-tree; splitting of group; Rips theory; -trees; splittings of groups
UR - http://eudml.org/doc/10308
ER -

References

top
  1. Emina Alibegovic, Makanin-Razborov diagrams for limit groups, (2004) Zbl1185.20034
  2. Igor Belegradek, Andrzej Szczepanski, Endomorphisms of relatively hyperbolic groups, (2005) Zbl1190.20034
  3. M. Bestvina, M. Feighn, Outer Limits 
  4. M. Bestvina, M. Feighn, Bounding the complexity of simplicial group actions on trees, Invent. Math. 103 (1991), 449-469 Zbl0724.20019MR1091614
  5. M. Bestvina, M. Feighn, A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992), 85-101 Zbl0724.57029MR1152226
  6. M. Bestvina, M. Feighn, Stable actions of groups on real trees, Invent. Math. 121 (1995), 287-321 Zbl0837.20047MR1346208
  7. Ian Chiswell, Introduction to Λ -trees, (2001), World Scientific Publishing Co. Inc., River Edge, NJ Zbl1004.20014MR1851337
  8. M. M. Cohen, M. Lustig, Very small group actions on -trees and Dehn twist automorphisms, Topology 34 (1995), 575-617 Zbl0844.20018MR1341810
  9. Group Theory Cooperative, MAGNUS, Computational package for exploring infinite groups, version 4.1.3 beta, (2005) 
  10. M. Culler, J. W. Morgan, Group actions on -trees, Proc. London Math. Soc. (3) 55 (1987), 571-604 Zbl0658.20021MR907233
  11. Thomas Delzant, Sur l’accessibilité acylindrique des groupes de présentation finie, Ann. Inst. Fourier (Grenoble) 49 (1999), 1215-1224 Zbl0999.20017
  12. Cornelia Druţu, Mark Sapir, Groups acting on tree-graded spaces and splittings of relatively hyperbolic group, (2006) Zbl1138.20024
  13. M. J. Dunwoody, Folding sequences, The Epstein birthday schrift (1998), 139-158 (electronic), Geom. Topol., Coventry Zbl0927.20013MR1668347
  14. D. Gaboriau, G. Levitt, F. Paulin, Pseudogroups of isometries of and Rips’ theorem on free actions on -trees, Israel J. Math. 87 (1994), 403-428 Zbl0824.57001
  15. D. Gaboriau, G. Levitt, F. Paulin, Pseudogroups of isometries of : reconstruction of free actions on -trees, Ergodic Theory Dynam. Systems 15 (1995), 633-652 Zbl0839.58022MR1346393
  16. Daniel Groves, Limit groups for relatively hyperbolic groups. II. Makanin-Razborov diagrams, Geom. Topol. 9 (2005), 2319-2358 (electronic) Zbl1100.20032MR2209374
  17. V. Guirardel, Actions de groupes sur des arbres réels et dynamique dans la frontière de l’outre-espace, (1998) 
  18. V. Guirardel, Approximations of stable actions on -trees, Comment. Math. Helv. 73 (1998), 89-121 Zbl0979.20026MR1610591
  19. V. Guirardel, Limit groups and groups acting freely on n -trees, Geom. Topol. 8 (2004), 1427-1470 (electronic) Zbl1114.20013MR2119301
  20. V. Guirardel, Cœur et nombre d’intersection pour les actions de groupes sur les arbres, Ann. Sci. École Norm. Sup. (4) 38 (2005), 847-888 Zbl1110.20019
  21. Paulo Gusmão, Feuilletages mesurés et pseudogroupes d’isométries du cercle, J. Math. Sci. Univ. Tokyo 7 (2000), 487-508 Zbl0965.57027
  22. H. Imanishi, On codimension one foliations defined by closed one-forms with singularities, J. Math. Kyoto Univ. 19 (1979), 285-291 Zbl0417.57010MR545709
  23. I. Kapovich, R. Weidmann, Acylindrical accessibility for groups acting on -trees, Math. Z. 249 (2005), 773-782 Zbl1080.20035MR2126215
  24. Gilbert Levitt, La dynamique des pseudogroupes de rotations, Invent. Math. 113 (1993), 633-670 Zbl0791.58055MR1231840
  25. Gilbert Levitt, Graphs of actions on -trees, Comment. Math. Helv. 69 (1994), 28-38 Zbl0802.05044MR1259604
  26. Gilbert Levitt, Frédéric Paulin, Geometric group actions on trees, Amer. J. Math. 119 (1997), 83-102 Zbl0878.20019MR1428059
  27. John W. Morgan, Ergodic theory and free actions of groups on -trees, Invent. Math. 94 (1988), 605-622 Zbl0676.57001MR969245
  28. John W. Morgan, Peter B. Shalen, Valuations, trees, and degenerations of hyperbolic structures. I, Ann. of Math. (2) 120 (1984), 401-476 Zbl0583.57005MR769158
  29. Frédéric Paulin, Topologie de Gromov équivariante, structures hyperboliques et arbres réels, Invent. Math. 94 (1988), 53-80 Zbl0673.57034MR958589
  30. E. Rips, Z. Sela, Structure and rigidity in hyperbolic groups. I, Geom. Funct. Anal. 4 (1994), 337-371 Zbl0818.20042MR1274119
  31. G. P. Scott, Finitely generated 3 -manifold groups are finitely presented, J. London Math. Soc. (2) 6 (1973), 437-440 Zbl0254.57003MR380763
  32. Z. Sela, Acylindrical accessibility for groups, Invent. Math. 129 (1997), 527-565 Zbl0887.20017MR1465334
  33. Z. Sela, Endomorphisms of hyperbolic groups. I. The Hopf property, Topology 38 (1999), 301-321 Zbl0929.20033MR1660337
  34. Z. Sela, Diophantine geometry over groups. I. Makanin-Razborov diagrams, Publ. Math. Inst. Hautes Études Sci. 93 (2001), 31-105 Zbl1018.20034MR1863735
  35. Z. Sela, Diophantine geometry over groups VII: The elementary theory of a hyperbolic group, (2002) Zbl1060.20022
  36. Z. Sela, Diophantine geometry over groups. VI. The elementary theory of a free group, Geom. Funct. Anal. 16 (2006), 707-730 Zbl1118.20035MR2238945
  37. J-P. Serre, Arbres, amalgames, S L 2 , (1977), Société Mathématique de France, Paris Zbl0369.20013
  38. Peter B. Shalen, Dendrology and its applications, Group theory from a geometrical viewpoint (Trieste, 1990) (1991), 543-616, World Sci. Publishing, River Edge, NJ Zbl0843.20018MR1170376
  39. Richard Skora, Combination theorems for actions on trees, (1989) 
  40. John R. Stallings, Topology of finite graphs, Invent. Math. 71 (1983), 551-565 Zbl0521.20013MR695906
  41. Gadde Swarup, Delzant’s variation on Scott complexity, (2004) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.