Systolic invariants of groups and 2 -complexes via Grushko decomposition

Yuli B. Rudyak[1]; Stéphane Sabourau[2]

  • [1] University of Florida Department of Mathematics PO Box 118105 Gainesville, FL 32611-8105 (USA)
  • [2] Université de Tours Laboratoire de Mathématiques et Physique Théorique CNRS UMR 6083 Fédération de recherche Dennis Poisson (FR 2964) Parc de Grandmont 37200 Tours (France)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 3, page 777-800
  • ISSN: 0373-0956

Abstract

top
We prove a finiteness result for the systolic area of groups. Namely, we show that there are only finitely many possible unfree factors of fundamental groups of  2 -complexes whose systolic area is uniformly bounded. We also show that the number of freely indecomposable such groups grows at least exponentially with the bound on the systolic area. Furthermore, we prove a uniform systolic inequality for all 2 -complexes with unfree fundamental group that improves the previously known bounds in this dimension.

How to cite

top

Rudyak, Yuli B., and Sabourau, Stéphane. "Systolic invariants of groups and $2$-complexes via Grushko decomposition." Annales de l’institut Fourier 58.3 (2008): 777-800. <http://eudml.org/doc/10334>.

@article{Rudyak2008,
abstract = {We prove a finiteness result for the systolic area of groups. Namely, we show that there are only finitely many possible unfree factors of fundamental groups of $2$-complexes whose systolic area is uniformly bounded. We also show that the number of freely indecomposable such groups grows at least exponentially with the bound on the systolic area. Furthermore, we prove a uniform systolic inequality for all $2$-complexes with unfree fundamental group that improves the previously known bounds in this dimension.},
affiliation = {University of Florida Department of Mathematics PO Box 118105 Gainesville, FL 32611-8105 (USA); Université de Tours Laboratoire de Mathématiques et Physique Théorique CNRS UMR 6083 Fédération de recherche Dennis Poisson (FR 2964) Parc de Grandmont 37200 Tours (France)},
author = {Rudyak, Yuli B., Sabourau, Stéphane},
journal = {Annales de l’institut Fourier},
keywords = {Systole; systolic area; systolic ratio; $2$-complex; Grushko decomposition; systole; 2-complex},
language = {eng},
number = {3},
pages = {777-800},
publisher = {Association des Annales de l’institut Fourier},
title = {Systolic invariants of groups and $2$-complexes via Grushko decomposition},
url = {http://eudml.org/doc/10334},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Rudyak, Yuli B.
AU - Sabourau, Stéphane
TI - Systolic invariants of groups and $2$-complexes via Grushko decomposition
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 3
SP - 777
EP - 800
AB - We prove a finiteness result for the systolic area of groups. Namely, we show that there are only finitely many possible unfree factors of fundamental groups of $2$-complexes whose systolic area is uniformly bounded. We also show that the number of freely indecomposable such groups grows at least exponentially with the bound on the systolic area. Furthermore, we prove a uniform systolic inequality for all $2$-complexes with unfree fundamental group that improves the previously known bounds in this dimension.
LA - eng
KW - Systole; systolic area; systolic ratio; $2$-complex; Grushko decomposition; systole; 2-complex
UR - http://eudml.org/doc/10334
ER -

References

top
  1. A. D. Aleksandrov, V. A. Zalgaller, Intrinsic geometry of surfaces, 15 (1967), American Mathematical Society, Providence, R.I. Zbl0146.44103MR216434
  2. F. Balacheff, Sur des problèmes de la géométrie systolique, Sémin. Théor. Spectr. Géom. 22 (2004), 71-82 Zbl1083.53043MR2136136
  3. V. Bangert, C. Croke, S. Ivanov, M. Katz, Filling area conjecture and ovalless real hyperelliptic surfaces, Geom. Funct. Anal. 15 (2005), 577-597 Zbl1082.53033MR2221144
  4. C. Bavard, Une remarque sur la géométrie systolique de la bouteille de Klein, Arch. Math. 87 (2006), 72-74 Zbl1109.53037MR2246408
  5. J. Bochnak, M. Coste, M.-F. Roy, Real algebraic geometry, 36 (1998), Springer-Verlag Zbl0912.14023MR1659509
  6. Burago, V. A. Zalgaller, Geometric inequalities, 285 (1988), Springer-Verlag, Berlin Zbl0633.53002MR936419
  7. P. Buser, P. Sarnak, On the period matrix of a Riemann surface of large genus. With an appendix by J. H. Conway and N. J. A. Sloane, Invent. Math. 117 (1994), 27-56 Zbl0814.14033MR1269424
  8. C. Croke, M. Katz, Universal volume bounds in Riemannian manifolds, Surveys in Differential Geometry 8 (2002), 109-137, S.T. Yau Zbl1051.53026MR2039987
  9. T. Delzant, Décomposition d’un groupe en produit libre ou somme amalgamée, J. Reine Angew. Math. 470 (1996), 153-180 Zbl0836.20038
  10. H. Federer, Geometric measure theory, Grundlehren der mathematischen Wissenschaften 153 (1969), Springer–Verlag, Berlin Zbl0176.00801MR257325
  11. M. Gromov, Filling Riemannian manifolds, J. Diff. Geom. 18 (1983), 1-147 Zbl0515.53037MR697984
  12. M. Gromov, Systoles and intersystolic inequalities, (1996), Soc. Math. France, Paris Zbl0877.53002MR1427763
  13. M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, 152 (1999), Birkhäuser, Boston Zbl0953.53002MR1699320
  14. J. Hebda, Some lower bounds for the area of surfaces, Invent. Math. 65 (1982), 485-490 Zbl0482.53028MR643566
  15. I. Kapovich, P. Schupp, Delzant’s T-invariant, Kolmogorov complexity and one-relator groups, Comment. Math. Helv. 80 (2005), 911-933 Zbl1151.20026
  16. M. Katz, Systolic geometry and topology. With an appendix by Jake P, 137 (2007), Amer. Math. Soc. Zbl1149.53003MR2292367
  17. M. Katz, Y. Rudyak, S. Sabourau, Systoles of 2-complexes, Reeb graph, and Grushko decomposition, Int. Math. Res. Not. (2006) Zbl1116.57001MR2250017
  18. M. Katz, S. Sabourau, Entropy of systolically extremal surfaces and asymptotic bounds, Ergodic Theory and Dynamical Systems 25 (2005), 1209-1220 Zbl1097.53027MR2158402
  19. M. Katz, S. Sabourau, Hyperelliptic surfaces are Loewner, Proc. Amer. Math. Soc. 134 (2006), 1189-1195 Zbl1090.53045MR2196056
  20. M. Katz, S. Sabourau, An optimal systolic inequality for CAT(0) metrics in genus two, Pacific J. Math. 227 (2006), 95-107 Zbl1156.53019MR2247874
  21. M. Katz, M. Schaps, U. Vishne, Logarithmic growth of systole of arithmetic Riemann surfaces along congruence subgroups, J. Diff. Geom. 76 (2007), 399-422 Zbl1149.53025MR2331526
  22. K. Ohshika, Discrete groups, (2002), American Mathematical Society, Providence, RI Zbl1006.20031MR1862839
  23. P. M. Pu, Some inequalities in certain nonorientable Riemannian manifolds, Pacific J. Math. 2 (1952), 55-71 Zbl0046.39902MR48886
  24. S. Sabourau, Asymptotic bounds for separating systoles on surfaces, Comment. Math. Helv. Zbl1142.53034MR2365407
  25. John R. Stallings, A topological proof of Grushko’s theorem on free products, Math. Z. 90 (1965), 1-8 Zbl0135.04603

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.