On Dirichlet Series and Petersson Products for Siegel Modular Forms

Siegfried Böcherer[1]; Francesco Ludovico Chiera[2]

  • [1] Universität Mannheim Fakultät für Mathematik und Informatik A5, 68131 Mannheim(Germany)
  • [2] Università “La Sapienza” di Roma Dipartimento di Matematica P. le A. Moro 2 00185 Rome (Italy)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 3, page 801-824
  • ISSN: 0373-0956

Abstract

top
We prove that the Dirichlet series of Rankin–Selberg type associated with any pair of (not necessarily cuspidal) Siegel modular forms of degree n and weight k n / 2 has meromorphic continuation to . Moreover, we show that the Petersson product of any pair of square–integrable modular forms of weight k n / 2 may be expressed in terms of the residue at s = k of the associated Dirichlet series.

How to cite

top

Böcherer, Siegfried, and Chiera, Francesco Ludovico. "On Dirichlet Series and Petersson Products for Siegel Modular Forms." Annales de l’institut Fourier 58.3 (2008): 801-824. <http://eudml.org/doc/10335>.

@article{Böcherer2008,
abstract = {We prove that the Dirichlet series of Rankin–Selberg type associated with any pair of (not necessarily cuspidal) Siegel modular forms of degree $n$ and weight $k \ge n/2$ has meromorphic continuation to $\mathbb\{C\}$. Moreover, we show that the Petersson product of any pair of square–integrable modular forms of weight $k\ge n/2$ may be expressed in terms of the residue at $s=k$ of the associated Dirichlet series.},
affiliation = {Universität Mannheim Fakultät für Mathematik und Informatik A5, 68131 Mannheim(Germany); Università “La Sapienza” di Roma Dipartimento di Matematica P. le A. Moro 2 00185 Rome (Italy)},
author = {Böcherer, Siegfried, Chiera, Francesco Ludovico},
journal = {Annales de l’institut Fourier},
keywords = {Rankin-Selberg method; Petersson product; non-cuspidal modular forms; invariant differential operators},
language = {eng},
number = {3},
pages = {801-824},
publisher = {Association des Annales de l’institut Fourier},
title = {On Dirichlet Series and Petersson Products for Siegel Modular Forms},
url = {http://eudml.org/doc/10335},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Böcherer, Siegfried
AU - Chiera, Francesco Ludovico
TI - On Dirichlet Series and Petersson Products for Siegel Modular Forms
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 3
SP - 801
EP - 824
AB - We prove that the Dirichlet series of Rankin–Selberg type associated with any pair of (not necessarily cuspidal) Siegel modular forms of degree $n$ and weight $k \ge n/2$ has meromorphic continuation to $\mathbb{C}$. Moreover, we show that the Petersson product of any pair of square–integrable modular forms of weight $k\ge n/2$ may be expressed in terms of the residue at $s=k$ of the associated Dirichlet series.
LA - eng
KW - Rankin-Selberg method; Petersson product; non-cuspidal modular forms; invariant differential operators
UR - http://eudml.org/doc/10335
ER -

References

top
  1. S. Böcherer, Über die Fourier-Jacobi-Entwicklung Siegelscher Eisensteinreihen., Math. Z. 183 (1983), 21-46 Zbl0497.10020MR701357
  2. S. Böcherer, F.L. Chiera, Petersson products of singular and almost singular theta series., Manuscr. Math. 115 (2004), 281-297 Zbl1072.11031MR2102053
  3. S. Böcherer, S. Raghavan, On Fourier coefficients of Siegel modular forms., J. Reine Angew. Math. 384 (1988), 80-101 Zbl0636.10022MR929979
  4. F.L. Chiera, On Petersson products of not necessarily cuspidal modular forms., J. Number Theory 122 (2007), 13-24 Zbl1118.11021MR2287108
  5. Michel Courtieu, A. Panchishkin, Non-Archimedean L -functions and arithmetical Siegel modular forms. 2nd, augmented ed., (2004), Lecture Notes in Mathematics 1471. Berlin: Springer. viii, 196 p. Zbl1070.11023MR2034949
  6. Anton Deitmar, Aloys Krieg, Theta correspondence for Eisenstein series., Math. Z. 208 (1991), 273-288 Zbl0773.11028MR1128710
  7. Paul Feit, Poles and residues of Eisenstein series for symplectic and unitary groups., Mem. Am. Math. Soc. 346 (1986) Zbl0591.10017MR840834
  8. E. Freitag, Siegelsche Modulfunktionen., (1983) Zbl0498.10016MR871067
  9. Harish-Chandra, Discrete series for semisimple Lie groups. II: Explicit determination of the characters., Acta Math. 116 (1966), 1-111 Zbl0199.20102MR219666
  10. Michael Harris, The rationality of holomorphic Eisenstein series., Invent. Math. 63 (1981), 305-310 Zbl0452.10031MR610541
  11. Michael Harris, Hans Plesner Jakobsen, Singular holomorphic representations and singular modular forms., Math. Ann. 259 (1982), 227-244 Zbl0466.32017MR656663
  12. V.L. Kalinin, Eisenstein series on the symplectic group., Math. USSR, Sb. 32 (1978), 449-476 Zbl0397.10021MR563064
  13. V.L. Kalinin, Analytic properties of the convolution of Siegel modular forms of genus n., Math. USSR, Sb. 48 (1984), 193-200 Zbl0542.10020MR687612
  14. Y. Kitaoka, Lectures on Siegel modular forms and representation by quadratic forms., (1986), Lectures on Mathematics and Physics. Mathematics, 77. Tata Institute of Fundamental Research, Bombay. Berlin etc.: Springer-Verlag. V, 227 p. Zbl0596.10020MR843330
  15. Helmut Klingen, Introductory lectures on Siegel modular forms., (1990), Cambridge Studies in Advanced Mathematics, 20. Cambridge: Cambridge University Press. x, 162 p. Zbl0693.10023MR1046630
  16. W. Kohnen, A simple remark on eigenvalues of Hecke operators on Siegel modular forms., Abh. Math. Semin. Univ. Hamb. 57 (1987), 33-36 Zbl0641.10022MR927162
  17. W. Kohnen, N.-P. Skoruppa, A certain Dirichlet series attached to Siegel modular forms of degree two., Invent. Math. 95 (1989), 541-558 Zbl0665.10019MR979364
  18. Serge Lang, Introduction to modular forms. (With two appendices, by D. B. Zagier and by W. Feit)., (1976), Grundlehren der mathematischen Wissenschaften, 222. Berlin-Heidelberg-New York: Springer-Verlag. IX, 261 p. with 9 figs. Zbl0344.10011MR429740
  19. Daniel B. Lieman, The G L ( 3 ) Rankin-Selberg convolution for functions not of rapid decay., Duke Math. J. 69 (1993), 219-242 Zbl0779.11021MR1201699
  20. Hans Maass, Siegel’s modular forms and Dirichlet series. Course given at the University of Maryland, 1969-1970., (1971) Zbl0224.10028
  21. Hans Maass, Dirichletsche Reihen und Modulformen zweiten Grades. (Dirichlet series and modular forms of second degree)., Acta Arith. 24 (1973), 225-238 Zbl0273.10022MR327663
  22. Shin-ichiro Mizumoto, Eisenstein series for Siegel modular groups., Math. Ann. 297 (1993), 581-625 Zbl0786.11024MR1245409
  23. Y. Mizuno, The Rankin-Selberg convolution for Cohen’s Eisenstein series of half integral weight., Abh. Math. Semin. Univ. Hamb. 75 (2005), 1-20 Zbl1082.11025
  24. Hans Petersson, Über die Berechnung der Skalarprodukte ganzer Modulformen., Comment. Math. Helv. 22 (1949), 168-199 Zbl0032.20601MR28426
  25. R.A. Rankin, Contributions to the theory of Ramanujan’s function τ ( n ) and similar arithmetical functions. II. The order of the Fourier coefficients of integral modular forms., Proc. Camb. Philos. Soc. 35 (1939), 357-372 Zbl0021.39202
  26. I. Satake, Caractérisation de l’espace des Spitzenformen, Séminaire Henri Cartan; 10 no.1 (1957/1958). Fonctions Automorphes. Exposé 9 bis. Secrétariat Math., Paris, 1958. (1958) 
  27. Mikio Sato, Takuro Shintani, On zeta functions associated with prehomogeneous vector spaces., Ann. of Math. 100 (1974), 131-170 Zbl0309.10014MR344230
  28. Goro Shimura, The special values of the zeta functions associated with cusp forms., Commun. Pure Appl. Math. 29 (1976), 783-804 Zbl0348.10015MR434962
  29. Goro Shimura, Invariant differential operators on Hermitian symmetric spaces., Ann. of Math. 132 (1990), 237-272 Zbl0718.11020MR1070598
  30. Goro Shimura, Differential operators, holomorphic projection, and singular forms., Duke Math. J. 76 (1994), 141-173 Zbl0829.11029MR1301189
  31. Rainer Weissauer, Vektorwertige Siegelsche Modulformen kleinen Gewichtes., J. Reine Angew. Math. 343 (1983), 184-202 Zbl0502.10012MR705885
  32. Tadashi Yamazaki, Rankin-Selberg method for Siegel cusp forms., Nagoya Math. J. 120 (1990), 35-49 Zbl0715.11025MR1086567
  33. Don Zagier, The Rankin-Selberg method for automorphic functions which are not of rapid decay., J. Fac. Sci., Univ. Tokyo, Sect. I A 28 (1981), 415-437 Zbl0505.10011MR656029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.