On Dirichlet Series and Petersson Products for Siegel Modular Forms
Siegfried Böcherer[1]; Francesco Ludovico Chiera[2]
- [1] Universität Mannheim Fakultät für Mathematik und Informatik A5, 68131 Mannheim(Germany)
- [2] Università “La Sapienza” di Roma Dipartimento di Matematica P. le A. Moro 2 00185 Rome (Italy)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 3, page 801-824
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBöcherer, Siegfried, and Chiera, Francesco Ludovico. "On Dirichlet Series and Petersson Products for Siegel Modular Forms." Annales de l’institut Fourier 58.3 (2008): 801-824. <http://eudml.org/doc/10335>.
@article{Böcherer2008,
abstract = {We prove that the Dirichlet series of Rankin–Selberg type associated with any pair of (not necessarily cuspidal) Siegel modular forms of degree $n$ and weight $k \ge n/2$ has meromorphic continuation to $\mathbb\{C\}$. Moreover, we show that the Petersson product of any pair of square–integrable modular forms of weight $k\ge n/2$ may be expressed in terms of the residue at $s=k$ of the associated Dirichlet series.},
affiliation = {Universität Mannheim Fakultät für Mathematik und Informatik A5, 68131 Mannheim(Germany); Università “La Sapienza” di Roma Dipartimento di Matematica P. le A. Moro 2 00185 Rome (Italy)},
author = {Böcherer, Siegfried, Chiera, Francesco Ludovico},
journal = {Annales de l’institut Fourier},
keywords = {Rankin-Selberg method; Petersson product; non-cuspidal modular forms; invariant differential operators},
language = {eng},
number = {3},
pages = {801-824},
publisher = {Association des Annales de l’institut Fourier},
title = {On Dirichlet Series and Petersson Products for Siegel Modular Forms},
url = {http://eudml.org/doc/10335},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Böcherer, Siegfried
AU - Chiera, Francesco Ludovico
TI - On Dirichlet Series and Petersson Products for Siegel Modular Forms
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 3
SP - 801
EP - 824
AB - We prove that the Dirichlet series of Rankin–Selberg type associated with any pair of (not necessarily cuspidal) Siegel modular forms of degree $n$ and weight $k \ge n/2$ has meromorphic continuation to $\mathbb{C}$. Moreover, we show that the Petersson product of any pair of square–integrable modular forms of weight $k\ge n/2$ may be expressed in terms of the residue at $s=k$ of the associated Dirichlet series.
LA - eng
KW - Rankin-Selberg method; Petersson product; non-cuspidal modular forms; invariant differential operators
UR - http://eudml.org/doc/10335
ER -
References
top- S. Böcherer, Über die Fourier-Jacobi-Entwicklung Siegelscher Eisensteinreihen., Math. Z. 183 (1983), 21-46 Zbl0497.10020MR701357
- S. Böcherer, F.L. Chiera, Petersson products of singular and almost singular theta series., Manuscr. Math. 115 (2004), 281-297 Zbl1072.11031MR2102053
- S. Böcherer, S. Raghavan, On Fourier coefficients of Siegel modular forms., J. Reine Angew. Math. 384 (1988), 80-101 Zbl0636.10022MR929979
- F.L. Chiera, On Petersson products of not necessarily cuspidal modular forms., J. Number Theory 122 (2007), 13-24 Zbl1118.11021MR2287108
- Michel Courtieu, A. Panchishkin, Non-Archimedean -functions and arithmetical Siegel modular forms. 2nd, augmented ed., (2004), Lecture Notes in Mathematics 1471. Berlin: Springer. viii, 196 p. Zbl1070.11023MR2034949
- Anton Deitmar, Aloys Krieg, Theta correspondence for Eisenstein series., Math. Z. 208 (1991), 273-288 Zbl0773.11028MR1128710
- Paul Feit, Poles and residues of Eisenstein series for symplectic and unitary groups., Mem. Am. Math. Soc. 346 (1986) Zbl0591.10017MR840834
- E. Freitag, Siegelsche Modulfunktionen., (1983) Zbl0498.10016MR871067
- Harish-Chandra, Discrete series for semisimple Lie groups. II: Explicit determination of the characters., Acta Math. 116 (1966), 1-111 Zbl0199.20102MR219666
- Michael Harris, The rationality of holomorphic Eisenstein series., Invent. Math. 63 (1981), 305-310 Zbl0452.10031MR610541
- Michael Harris, Hans Plesner Jakobsen, Singular holomorphic representations and singular modular forms., Math. Ann. 259 (1982), 227-244 Zbl0466.32017MR656663
- V.L. Kalinin, Eisenstein series on the symplectic group., Math. USSR, Sb. 32 (1978), 449-476 Zbl0397.10021MR563064
- V.L. Kalinin, Analytic properties of the convolution of Siegel modular forms of genus n., Math. USSR, Sb. 48 (1984), 193-200 Zbl0542.10020MR687612
- Y. Kitaoka, Lectures on Siegel modular forms and representation by quadratic forms., (1986), Lectures on Mathematics and Physics. Mathematics, 77. Tata Institute of Fundamental Research, Bombay. Berlin etc.: Springer-Verlag. V, 227 p. Zbl0596.10020MR843330
- Helmut Klingen, Introductory lectures on Siegel modular forms., (1990), Cambridge Studies in Advanced Mathematics, 20. Cambridge: Cambridge University Press. x, 162 p. Zbl0693.10023MR1046630
- W. Kohnen, A simple remark on eigenvalues of Hecke operators on Siegel modular forms., Abh. Math. Semin. Univ. Hamb. 57 (1987), 33-36 Zbl0641.10022MR927162
- W. Kohnen, N.-P. Skoruppa, A certain Dirichlet series attached to Siegel modular forms of degree two., Invent. Math. 95 (1989), 541-558 Zbl0665.10019MR979364
- Serge Lang, Introduction to modular forms. (With two appendices, by D. B. Zagier and by W. Feit)., (1976), Grundlehren der mathematischen Wissenschaften, 222. Berlin-Heidelberg-New York: Springer-Verlag. IX, 261 p. with 9 figs. Zbl0344.10011MR429740
- Daniel B. Lieman, The Rankin-Selberg convolution for functions not of rapid decay., Duke Math. J. 69 (1993), 219-242 Zbl0779.11021MR1201699
- Hans Maass, Siegel’s modular forms and Dirichlet series. Course given at the University of Maryland, 1969-1970., (1971) Zbl0224.10028
- Hans Maass, Dirichletsche Reihen und Modulformen zweiten Grades. (Dirichlet series and modular forms of second degree)., Acta Arith. 24 (1973), 225-238 Zbl0273.10022MR327663
- Shin-ichiro Mizumoto, Eisenstein series for Siegel modular groups., Math. Ann. 297 (1993), 581-625 Zbl0786.11024MR1245409
- Y. Mizuno, The Rankin-Selberg convolution for Cohen’s Eisenstein series of half integral weight., Abh. Math. Semin. Univ. Hamb. 75 (2005), 1-20 Zbl1082.11025
- Hans Petersson, Über die Berechnung der Skalarprodukte ganzer Modulformen., Comment. Math. Helv. 22 (1949), 168-199 Zbl0032.20601MR28426
- R.A. Rankin, Contributions to the theory of Ramanujan’s function and similar arithmetical functions. II. The order of the Fourier coefficients of integral modular forms., Proc. Camb. Philos. Soc. 35 (1939), 357-372 Zbl0021.39202
- I. Satake, Caractérisation de l’espace des Spitzenformen, Séminaire Henri Cartan; 10 no.1 (1957/1958). Fonctions Automorphes. Exposé 9 bis. Secrétariat Math., Paris, 1958. (1958)
- Mikio Sato, Takuro Shintani, On zeta functions associated with prehomogeneous vector spaces., Ann. of Math. 100 (1974), 131-170 Zbl0309.10014MR344230
- Goro Shimura, The special values of the zeta functions associated with cusp forms., Commun. Pure Appl. Math. 29 (1976), 783-804 Zbl0348.10015MR434962
- Goro Shimura, Invariant differential operators on Hermitian symmetric spaces., Ann. of Math. 132 (1990), 237-272 Zbl0718.11020MR1070598
- Goro Shimura, Differential operators, holomorphic projection, and singular forms., Duke Math. J. 76 (1994), 141-173 Zbl0829.11029MR1301189
- Rainer Weissauer, Vektorwertige Siegelsche Modulformen kleinen Gewichtes., J. Reine Angew. Math. 343 (1983), 184-202 Zbl0502.10012MR705885
- Tadashi Yamazaki, Rankin-Selberg method for Siegel cusp forms., Nagoya Math. J. 120 (1990), 35-49 Zbl0715.11025MR1086567
- Don Zagier, The Rankin-Selberg method for automorphic functions which are not of rapid decay., J. Fac. Sci., Univ. Tokyo, Sect. I A 28 (1981), 415-437 Zbl0505.10011MR656029
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.