# Resurgence of the Euler-MacLaurin summation formula

Ovidiu Costin^{[1]}; Stavros Garoufalidis^{[2]}

- [1] Ohio State University Department of Mathematics 231 W 18th Avenue Columbus, OH 43210 (USA)
- [2] Georgia Institute of Technology School of Mathematics Atlanta, GA 30332-0160 (USA)

Annales de l’institut Fourier (2008)

- Volume: 58, Issue: 3, page 893-914
- ISSN: 0373-0956

## Access Full Article

top## Abstract

top## How to cite

topCostin, Ovidiu, and Garoufalidis, Stavros. "Resurgence of the Euler-MacLaurin summation formula." Annales de l’institut Fourier 58.3 (2008): 893-914. <http://eudml.org/doc/10338>.

@article{Costin2008,

abstract = {The Euler-MacLaurin summation formula compares the sum of a function over the lattice points of an interval with its corresponding integral, plus a remainder term. The remainder term has an asymptotic expansion, and for a typical analytic function, it is a divergent (Gevrey-1) series. Under some decay assumptions of the function in a half-plane (resp. in the vertical strip containing the summation interval), Hardy (resp. Abel-Plana) prove that the asymptotic expansion is a Borel summable series, and give an exact Euler-MacLaurin summation formula.Using a mild resurgence hypothesis for the function to be summed, we give a Borel summable transseries expression for the remainder term, as well as a Laplace integral formula, with an explicit integrand which is a resurgent function itself. In particular, our summation formula allows for resurgent functions with singularities in the vertical strip containing the summation interval.Finally, we give two applications of our results. One concerns the construction of solutions of linear difference equations with a small parameter. Another concerns resurgence of 1-dimensional sums of quantum factorials, that are associated to knotted 3-dimensional objects.},

affiliation = {Ohio State University Department of Mathematics 231 W 18th Avenue Columbus, OH 43210 (USA); Georgia Institute of Technology School of Mathematics Atlanta, GA 30332-0160 (USA)},

author = {Costin, Ovidiu, Garoufalidis, Stavros},

journal = {Annales de l’institut Fourier},

keywords = {Euler-MacLaurin summation formula; Abel-Plana formula; resurgence; resurgent functions; Bernoulli numbers; Borel transform; Borel summation; Laplace transform; transseries; parametric resurgence; co-equational resurgence; WKB; difference equations with a parameter; Stirling’s formula; Quantum Topology; Stirling's formula; quantum topology},

language = {eng},

number = {3},

pages = {893-914},

publisher = {Association des Annales de l’institut Fourier},

title = {Resurgence of the Euler-MacLaurin summation formula},

url = {http://eudml.org/doc/10338},

volume = {58},

year = {2008},

}

TY - JOUR

AU - Costin, Ovidiu

AU - Garoufalidis, Stavros

TI - Resurgence of the Euler-MacLaurin summation formula

JO - Annales de l’institut Fourier

PY - 2008

PB - Association des Annales de l’institut Fourier

VL - 58

IS - 3

SP - 893

EP - 914

AB - The Euler-MacLaurin summation formula compares the sum of a function over the lattice points of an interval with its corresponding integral, plus a remainder term. The remainder term has an asymptotic expansion, and for a typical analytic function, it is a divergent (Gevrey-1) series. Under some decay assumptions of the function in a half-plane (resp. in the vertical strip containing the summation interval), Hardy (resp. Abel-Plana) prove that the asymptotic expansion is a Borel summable series, and give an exact Euler-MacLaurin summation formula.Using a mild resurgence hypothesis for the function to be summed, we give a Borel summable transseries expression for the remainder term, as well as a Laplace integral formula, with an explicit integrand which is a resurgent function itself. In particular, our summation formula allows for resurgent functions with singularities in the vertical strip containing the summation interval.Finally, we give two applications of our results. One concerns the construction of solutions of linear difference equations with a small parameter. Another concerns resurgence of 1-dimensional sums of quantum factorials, that are associated to knotted 3-dimensional objects.

LA - eng

KW - Euler-MacLaurin summation formula; Abel-Plana formula; resurgence; resurgent functions; Bernoulli numbers; Borel transform; Borel summation; Laplace transform; transseries; parametric resurgence; co-equational resurgence; WKB; difference equations with a parameter; Stirling’s formula; Quantum Topology; Stirling's formula; quantum topology

UR - http://eudml.org/doc/10338

ER -

## References

top- E.. Borel, Sur les singularités des séries de Taylor, Bull. Soc. Math. France 26 (1898), 238-248 Zbl29.0210.03MR1504324
- B.L.J. Braaksma, Transseries for a class of nonlinear difference equations, J. Differ. Equations Appl. 7 (2001), 717-750 Zbl1001.39002MR1871576
- B.L.J. Braaksma, R. Kuik, Resurgence relations for classes of differential and difference equations, Ann. Fac. Sci. Toulouse Math. 13 (2004), 479-492 Zbl1078.34068MR2116813
- B. Candelpergher, J. C. Nosmas, F. Pham, Approche de la résurgence, (1993), Hermann Zbl0791.32001MR1250603
- B. Candelpergher, J. C. Nosmas, F. Pham, Premiers pas en calcul étranger, Ann. Inst. Fourier (Grenoble) 43 (1993), 201-224 Zbl0785.30017MR1209701
- O. Costin, R. Costin, Rigorous WKB for finite-order linear recurrence relations with smooth coefficients, SIAM J. Math. Anal. 27 (1996), 110-134 Zbl0861.39007MR1373150
- O. Costin, R. Costin, On Borel summation and Stokes phenomena for rank-$1$ nonlinear systems of ordinary differential equations, Duke Math. J. 93 (1998), 289-344 Zbl0948.34068MR1625999
- O. Costin, R. Costin, Global reconstruction of analytic functions from local expansions, preprint (2006) Zbl1120.52002
- O. Costin, S. Garoufalidis, Resurgence of the Kontsevich-Zagier power series, preprint (2006) Zbl1238.57016
- O. Costin, S. Garoufalidis, Resurgence of 1-dimensional sums of sum-product type, preprint (2007) MR1822494
- O. Costin, S. Garoufalidis, Resurgence of the fractional polylogarithms, preprint (2007) Zbl1201.30044
- E. Delabaere, Introduction to the Écalle theory, Computer algebra and differential equations, London Math. Soc. Lecture Note Series 193 (1994), 59-101 Zbl0805.40007MR1278057
- E. Delabaere, F. Pham, Resurgent methods in semi-classical asymptotics, Ann. Inst. H. Poincaré Phys. Théor. 71 (1999), 1-94 Zbl0977.34053MR1704654
- J. Écalle, Resurgent functions, Vol. I–II, (1981), Mathematical Publications of Orsay, 81 MR670418
- J. Écalle, Weighted products and parametric resurgence, Analyse algébrique des perturbations singulières, I (Marseille-Luminy) Travaux en Cours 47 (1991), 7-49 Zbl0834.34067MR1296470
- S. Garoufalidis, J. Geronimo, Asymptotics of $q$-difference equations, Contemporary Math. AMS 416 (2006), 83-114 Zbl1144.57005MR2276137
- S. Garoufalidis, J. Geronimo, T. T. Q. Le, Gevrey series in quantum topology, J. Reine Angew. Math. Zbl1151.57006
- G. H. Hardy, Divergent Series, (1949), Clarendon Press, Oxford Zbl0032.05801MR30620
- R. Jungen, Sur les séries de Taylor n’ayant que des singularités algébrico-logarithmiques sur leur cercle de convergence, Comment. Math. Helv. 3 (1931), 266-306 Zbl0003.11901
- B. Malgrange, Introduction aux travaux de J. Écalle, Enseign. Math. 31 (1985), 261-282 Zbl0601.58043MR819354
- F. W. J. Olver, Asymptotics and special functions, (1997), A K Peters, Ltd., Wellesley, MA Zbl0982.41018MR1429619
- D. Sauzin, Resurgent functions and splitting problems, preprint (2006)
- D. Zagier, Vassiliev invariants and a strange identity related to the Dedekind eta-function, Topology 40 (2001), 945-960 Zbl0989.57009MR1860536

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.