Resurgence of the Kontsevich-Zagier series

Ovidiu Costin[1]; Stavros Garoufalidis[2]

  • [1] Ohio State University Department of Mathematics 231 W 18th Avenue Columbus, OH 43210 (USA)
  • [2] School of Mathematics Georgia Institute of Technology Atlanta, GA 30332-0160 (USA)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 3, page 1225-1258
  • ISSN: 0373-0956

Abstract

top
The paper is concerned with the resurgence of the Kontsevich-Zagier series f ( q ) = n = 0 ( 1 - q ) ( 1 - q n ) We give an explicit formula for the Borel transform of the power series when q = e 1 / x from which its analytic continuation, its singularities (all on the positive real axis) and the local monodromy can be manifestly determined. We also give two formulas (one involving the Dedekind eta function, and another involving the complex error function) for the right, left and median summation of the Borel transform. We also prove that the limiting values of the median sum at rational multiples of 1 / ( 2 π i ) coincide with the values of f ( q ) at the corresponding complex roots of unity. Our resurgence theorem extends more generally to the power series of torus knots and Seifert fibered 3-manifolds associated by Quantum Topology.

How to cite

top

Costin, Ovidiu, and Garoufalidis, Stavros. "Resurgence of the Kontsevich-Zagier series." Annales de l’institut Fourier 61.3 (2011): 1225-1258. <http://eudml.org/doc/219786>.

@article{Costin2011,
abstract = {The paper is concerned with the resurgence of the Kontsevich-Zagier series\[ f(q)=\sum \_\{n=0\}^\infty (1-q)\dots (1-q^n) \]We give an explicit formula for the Borel transform of the power series when $q=e^\{1/x\}$ from which its analytic continuation, its singularities (all on the positive real axis) and the local monodromy can be manifestly determined. We also give two formulas (one involving the Dedekind eta function, and another involving the complex error function) for the right, left and median summation of the Borel transform. We also prove that the limiting values of the median sum at rational multiples of $1/(2 \pi i)$ coincide with the values of $f(q)$ at the corresponding complex roots of unity. Our resurgence theorem extends more generally to the power series of torus knots and Seifert fibered 3-manifolds associated by Quantum Topology.},
affiliation = {Ohio State University Department of Mathematics 231 W 18th Avenue Columbus, OH 43210 (USA); School of Mathematics Georgia Institute of Technology Atlanta, GA 30332-0160 (USA)},
author = {Costin, Ovidiu, Garoufalidis, Stavros},
journal = {Annales de l’institut Fourier},
keywords = {resurgence; analytic continuation; Borel summability; analyzability; asymptotic expansions; transseries; Zagier-Kontsevich power series; strange identity; trefoil; Poincare homology sphere; Habiro ring; Laplace transform; Borel transform; knots; 3-manifolds; quantum topology; TQFT; perturbative quantum field theory; Gevrey series; resummation; Poincaré homology sphere},
language = {eng},
number = {3},
pages = {1225-1258},
publisher = {Association des Annales de l’institut Fourier},
title = {Resurgence of the Kontsevich-Zagier series},
url = {http://eudml.org/doc/219786},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Costin, Ovidiu
AU - Garoufalidis, Stavros
TI - Resurgence of the Kontsevich-Zagier series
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 3
SP - 1225
EP - 1258
AB - The paper is concerned with the resurgence of the Kontsevich-Zagier series\[ f(q)=\sum _{n=0}^\infty (1-q)\dots (1-q^n) \]We give an explicit formula for the Borel transform of the power series when $q=e^{1/x}$ from which its analytic continuation, its singularities (all on the positive real axis) and the local monodromy can be manifestly determined. We also give two formulas (one involving the Dedekind eta function, and another involving the complex error function) for the right, left and median summation of the Borel transform. We also prove that the limiting values of the median sum at rational multiples of $1/(2 \pi i)$ coincide with the values of $f(q)$ at the corresponding complex roots of unity. Our resurgence theorem extends more generally to the power series of torus knots and Seifert fibered 3-manifolds associated by Quantum Topology.
LA - eng
KW - resurgence; analytic continuation; Borel summability; analyzability; asymptotic expansions; transseries; Zagier-Kontsevich power series; strange identity; trefoil; Poincare homology sphere; Habiro ring; Laplace transform; Borel transform; knots; 3-manifolds; quantum topology; TQFT; perturbative quantum field theory; Gevrey series; resummation; Poincaré homology sphere
UR - http://eudml.org/doc/219786
ER -

References

top
  1. B. Candelpergher, J.C. Nosmas, F. Pham, Approche de la résurgence, (1993), Hermann Zbl0791.32001MR1250603
  2. B. Candelpergher, J.C. Nosmas, F. Pham, Premiers pas en calcul étranger, Ann. Inst. Fourier (Grenoble) 43 (1993), 201-224 Zbl0785.30017MR1209701
  3. O. Costin, On Borel summation and Stokes phenomena for rank- 1 nonlinear systems of ordinary differential equations, Duke Math. J. 93 (1998), 289-344 Zbl0948.34068MR1625999
  4. O. Costin, S. Garoufalidis, Resurgence of 1-dimensional series of sum-product type Zbl1238.57016
  5. O. Costin, S. Garoufalidis, Resurgence of the Euler-MacLaurin summation formula, Annales de l’Institut Fourier 58 (2008), 893-914 Zbl1166.34055MR2427514
  6. O. Costin, M.D. Kruskal, On optimal truncation of divergent series solutions of nonlinear differential systems, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999), 1931-1956 Zbl0945.34071MR1701558
  7. E. Delabaere, Introduction to the Écalle theory, Computer algebra and differential equations 193 (1994), 59-101, London Math. Soc. Lecture Note Ser. Zbl0805.40007MR1278057
  8. E. Delabaere, F. Pham, Resurgent methods in semi-classical asymptotics, Ann. Inst. H. Poincaré Phys. Théor. 71 (1999), 1-94 Zbl0977.34053MR1704654
  9. J. Écalle, Resurgent functions, Vol. I-III, (1981), Mathematical Publications of Orsay 81-05 MR670418
  10. J. Écalle, F. Menous, Well-behaved convolution averages and the non-accumulation theorem for limit-cycles, The Stokes Phenomenon and Hilbert’s 16th problem (1996), 71-102, World Scientific Zbl0857.34009MR1443689
  11. S. Garoufalidis, Chern-Simons theory, analytic continuation and arithmetic, preprint 2007 , Acta Math. Vietnam. 33 (2008), 335-362 Zbl1189.57010MR2501849
  12. S. Garoufalidis, T.T.Q. Le, Gevrey series in quantum topology, J. Reine Angew. Math. (2007), 1-27 Zbl1151.57006MR2404749
  13. V. Gelfreich, D. Sauzin, Borel summation and splitting of separatrices for the Hénon map, Ann. Inst. Fourier 51 (2001), 513-567 Zbl0988.37031MR1824963
  14. K. Habiro, On the quantum 𝔰𝔩 2 invariants of knots and integral homology spheres, Geom. Topol. Monogr. 4 (2002), 55-68 Zbl1040.57010MR2002603
  15. K. Habiro, Cyclotomic completions of polynomial rings, Publ. Res. Inst. Math. Sci. 40 (2004), 1127-1146 Zbl1098.13032MR2105705
  16. K. Hikami, Quantum invariant for torus link and modular forms, Comm. Math. Phys. 246 (2004), 403-426 Zbl1060.57011MR2048564
  17. K. Hikami, On the quantum invariant for the Brieskorn homology spheres, Internat. J. Math. 16 (2005), 661-685 Zbl1088.57013MR2153489
  18. V. Huynh, T.T.Q. Le, On the Colored Jones Polynomial and the Kashaev invariant, Fundam. Prikl. Mat. 11 (2005), 57-78 Zbl1181.57015MR2216852
  19. R. Jungen, Sur les séries de Taylor n’ayant que des singularités algébrico-logarithmiques sur leur cercle de convergence, Comment. Math. Helv. 3 (1931), 266-306 Zbl0003.11901MR1509439
  20. R. Kashaev, The hyperbolic volume of knots from the quantum dilogarithm, Modern Phys. Lett. A 39 (1997), 269-275 Zbl0876.57007MR1434238
  21. R. Lawrence, D. Zagier, Modular forms and quantum invariants of 3 -manifolds, in Sir Michael Atiyah: a great mathematician of the twentieth century, Asian J. Math. 3 (1999), 93-107 Zbl1024.11028MR1701924
  22. T.T.Q. Le, Integrality and symmetry of quantum link invariants, Duke Math. J. 102 (2000), 273-306 Zbl0951.57004MR1749439
  23. T.T.Q. Le, J. Murakami, T. Ohtsuki, A universal quantum invariant of 3-manifolds, Topology 37 (1998), 539-574 Zbl0897.57017MR1604883
  24. N.N. Lebedev, Special functions and their applications, (1972), Dover Publications, Inc. Zbl0271.33001MR350075
  25. B. Malgrange, Introduction aux travaux de J. Écalle, Enseign. Math. 31 (1985), 261-282 Zbl0601.58043MR819354
  26. S. Mandelbrojt, Séries lacunaires, (1936), Hermann Zbl0013.27005
  27. F. Menous, The well-behaved Catalan and Brownian averages and their applications to real resummation, Proceedings of the Symposium on Planar Vector Fields (Lleida, 1996), Publ. Mat. 41 (1997), 209-222 Zbl0883.40007MR1461652
  28. H. Murakami, J. Murakami, The colored Jones polynomials and the simplicial volume of a knot, Acta Math. 186 (2001), 85-104 Zbl0983.57009MR1828373
  29. C. Olivé, D. Sauzin, T.M. Seara, Two examples of resurgence, Analyzable functions and applications 373 (2005), 355-371, Amer. Math. Soc. Zbl1087.34061MR2130836
  30. F. Olver, Asymptotics and special functions, (1997), Reprint. AKP Classics. A K Peters, Ltd., Wellesley, MA Zbl0303.41035MR1429619
  31. J.P. Ramis, Séries divergentes et théories asymptotiques, 121 (1993), Bull. Soc. Math. France MR1272100
  32. N. Reshetikhin, V. Turaev, Ribbon graphs and their invariants derived from quantum groups, Commun. Math. Phys. 127 (1990), 1-26 Zbl0768.57003MR1036112
  33. V. Turaev, The Yang-Baxter equation and invariants of links, Inventiones Math. 92 (1988), 527-553 Zbl0648.57003MR939474
  34. V. Turaev, Quantum invariants of knots and 3-manifolds, 18 (1994), Walter de Gruyter, Berlin New York Zbl0812.57003MR1292673
  35. E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Physics. 121 (1989), 360-376 Zbl0667.57005MR990772
  36. D. Zagier, Vassiliev invariants and a strange identity related to the Dedekind eta-function, Commun. Math. Physics. 40 (2001), 945-960 Zbl0989.57009MR1860536

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.