Eulerian idempotent and Kashiwara-Vergne conjecture

Emily Burgunder[1]

  • [1] Université Montpellier II Institut de Mathématiques et de modélisation de Montpellier UMR CNRS 5149 Place Eugène Bataillon 34095 Montpellier Cedex 5 (France)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 4, page 1153-1184
  • ISSN: 0373-0956

Abstract

top
By using the interplay between the Eulerian idempotent and the Dynkin idempotent, we construct explicitly a particular symmetric solution ( F , G ) of the first equation of the Kashiwara-Vergne conjecture x + y - log ( e y e x ) = ( 1 - e - ad x ) F ( x , y ) + ( e ad y - 1 ) G ( x , y ) . Then, we explicit all the solutions of the equation in the completion of the free Lie algebra generated by two indeterminates x and y thanks to the kernel of the Dynkin idempotent.

How to cite

top

Burgunder, Emily. "Eulerian idempotent and Kashiwara-Vergne conjecture." Annales de l’institut Fourier 58.4 (2008): 1153-1184. <http://eudml.org/doc/10345>.

@article{Burgunder2008,
abstract = {By using the interplay between the Eulerian idempotent and the Dynkin idempotent, we construct explicitly a particular symmetric solution $(F,G)$ of the first equation of the Kashiwara-Vergne conjecture\[ x+y-\log (\{\rm e\}^\{y\}\{\rm e\}^\{x\}) = (1-\{\rm e\}^\{-\{\rm ad\}\, x\}) F(x,y)+(\{\rm e\}^\{\{\rm ad\}\, y\}-1) G(x,y) . \]Then, we explicit all the solutions of the equation in the completion of the free Lie algebra generated by two indeterminates $x$ and $y$ thanks to the kernel of the Dynkin idempotent.},
affiliation = {Université Montpellier II Institut de Mathématiques et de modélisation de Montpellier UMR CNRS 5149 Place Eugène Bataillon 34095 Montpellier Cedex 5 (France)},
author = {Burgunder, Emily},
journal = {Annales de l’institut Fourier},
keywords = {Kashiwara-Vergne conjecture; Baker-Campbell-Hausdorff series; Eulerian idempotent; Dynkin idempotent; Hopf algebras},
language = {eng},
number = {4},
pages = {1153-1184},
publisher = {Association des Annales de l’institut Fourier},
title = {Eulerian idempotent and Kashiwara-Vergne conjecture},
url = {http://eudml.org/doc/10345},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Burgunder, Emily
TI - Eulerian idempotent and Kashiwara-Vergne conjecture
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 4
SP - 1153
EP - 1184
AB - By using the interplay between the Eulerian idempotent and the Dynkin idempotent, we construct explicitly a particular symmetric solution $(F,G)$ of the first equation of the Kashiwara-Vergne conjecture\[ x+y-\log ({\rm e}^{y}{\rm e}^{x}) = (1-{\rm e}^{-{\rm ad}\, x}) F(x,y)+({\rm e}^{{\rm ad}\, y}-1) G(x,y) . \]Then, we explicit all the solutions of the equation in the completion of the free Lie algebra generated by two indeterminates $x$ and $y$ thanks to the kernel of the Dynkin idempotent.
LA - eng
KW - Kashiwara-Vergne conjecture; Baker-Campbell-Hausdorff series; Eulerian idempotent; Dynkin idempotent; Hopf algebras
UR - http://eudml.org/doc/10345
ER -

References

top
  1. A. Alekseev, E. Meinrenken, On the Kashiwara-Vergne conjecture, Invent. Math. 164 (2006), 615-634 Zbl1096.22007MR2221133
  2. A. Alekseev, E. Petracci, Uniqueness in the Kashiwara-Vergne conjecture, J. Lie Theory 16 3 (2006), 531-538 Zbl1111.22017MR2248143
  3. P. M. Cohn, Integral modules, Lie Rings and Free Groups, (1951) 
  4. M. Kashiwara, M. Vergne, The Campbell-Hausdorff formula and invariant hyperfunctions, Invent. Math. 47 (1978), 249-272 Zbl0404.22012MR492078
  5. M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), 157-216 Zbl1058.53065MR2062626
  6. J.-L. Loday, Série de Hausdorff, idempotents eulériens et algèbres de Hopf, Expo. Math. 12 (1994), 165-178 Zbl0807.17003MR1274784
  7. F. Patras, C. Reutenauer, On Dynkin and Klyachko idempotents in graded bialgebras, Adv. in Applied Math. 28 (2002), 560-579 Zbl1024.16021MR1900008
  8. C. Reutenauer, Free Lie Algebras, (1993), Oxford University Press Zbl0798.17001MR1231799
  9. F. Rouvière, Démonstration de la conjecture de Kashiwara-Vergne pour l’algèbre sl ( 2 ) , C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 657-660 Zbl0467.22011
  10. C. Torossian, Sur la conjecture combinatoire de Kashiwara-Vergne, J. Lie Theory 12 (2002), 597-616 Zbl1012.17002MR1923789
  11. M. Vergne, Le centre de l’algèbre enveloppante et la formule de Campbell-Hausdorff, C. R. Acad. Sci. Paris, Série I Math. 329 (1999), 767-772 Zbl0989.17007
  12. D. Wigner, An identity in the free Lie algebra, Proc. Amer. Math. Soc. (1989), 639-640 Zbl0682.17007MR969322

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.