Eulerian idempotent and Kashiwara-Vergne conjecture
- [1] Université Montpellier II Institut de Mathématiques et de modélisation de Montpellier UMR CNRS 5149 Place Eugène Bataillon 34095 Montpellier Cedex 5 (France)
 
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 4, page 1153-1184
 - ISSN: 0373-0956
 
Access Full Article
topAbstract
topHow to cite
topBurgunder, Emily. "Eulerian idempotent and Kashiwara-Vergne conjecture." Annales de l’institut Fourier 58.4 (2008): 1153-1184. <http://eudml.org/doc/10345>.
@article{Burgunder2008,
	abstract = {By using the interplay between the Eulerian idempotent and the Dynkin idempotent, we construct explicitly a particular symmetric solution $(F,G)$ of the first equation of the Kashiwara-Vergne conjecture\[ x+y-\log (\{\rm e\}^\{y\}\{\rm e\}^\{x\}) = (1-\{\rm e\}^\{-\{\rm ad\}\, x\}) F(x,y)+(\{\rm e\}^\{\{\rm ad\}\, y\}-1) G(x,y) . \]Then, we explicit all the solutions of the equation in the completion of the free Lie algebra generated by two indeterminates $x$ and $y$ thanks to the kernel of the Dynkin idempotent.},
	affiliation = {Université Montpellier II Institut de Mathématiques et de modélisation de Montpellier UMR CNRS 5149 Place Eugène Bataillon 34095 Montpellier Cedex 5 (France)},
	author = {Burgunder, Emily},
	journal = {Annales de l’institut Fourier},
	keywords = {Kashiwara-Vergne conjecture; Baker-Campbell-Hausdorff series; Eulerian idempotent; Dynkin idempotent; Hopf algebras},
	language = {eng},
	number = {4},
	pages = {1153-1184},
	publisher = {Association des Annales de l’institut Fourier},
	title = {Eulerian idempotent and Kashiwara-Vergne conjecture},
	url = {http://eudml.org/doc/10345},
	volume = {58},
	year = {2008},
}
TY  - JOUR
AU  - Burgunder, Emily
TI  - Eulerian idempotent and Kashiwara-Vergne conjecture
JO  - Annales de l’institut Fourier
PY  - 2008
PB  - Association des Annales de l’institut Fourier
VL  - 58
IS  - 4
SP  - 1153
EP  - 1184
AB  - By using the interplay between the Eulerian idempotent and the Dynkin idempotent, we construct explicitly a particular symmetric solution $(F,G)$ of the first equation of the Kashiwara-Vergne conjecture\[ x+y-\log ({\rm e}^{y}{\rm e}^{x}) = (1-{\rm e}^{-{\rm ad}\, x}) F(x,y)+({\rm e}^{{\rm ad}\, y}-1) G(x,y) . \]Then, we explicit all the solutions of the equation in the completion of the free Lie algebra generated by two indeterminates $x$ and $y$ thanks to the kernel of the Dynkin idempotent.
LA  - eng
KW  - Kashiwara-Vergne conjecture; Baker-Campbell-Hausdorff series; Eulerian idempotent; Dynkin idempotent; Hopf algebras
UR  - http://eudml.org/doc/10345
ER  - 
References
top- A. Alekseev, E. Meinrenken, On the Kashiwara-Vergne conjecture, Invent. Math. 164 (2006), 615-634 Zbl1096.22007MR2221133
 - A. Alekseev, E. Petracci, Uniqueness in the Kashiwara-Vergne conjecture, J. Lie Theory 16 3 (2006), 531-538 Zbl1111.22017MR2248143
 - P. M. Cohn, Integral modules, Lie Rings and Free Groups, (1951)
 - M. Kashiwara, M. Vergne, The Campbell-Hausdorff formula and invariant hyperfunctions, Invent. Math. 47 (1978), 249-272 Zbl0404.22012MR492078
 - M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), 157-216 Zbl1058.53065MR2062626
 - J.-L. Loday, Série de Hausdorff, idempotents eulériens et algèbres de Hopf, Expo. Math. 12 (1994), 165-178 Zbl0807.17003MR1274784
 - F. Patras, C. Reutenauer, On Dynkin and Klyachko idempotents in graded bialgebras, Adv. in Applied Math. 28 (2002), 560-579 Zbl1024.16021MR1900008
 - C. Reutenauer, Free Lie Algebras, (1993), Oxford University Press Zbl0798.17001MR1231799
 - F. Rouvière, Démonstration de la conjecture de Kashiwara-Vergne pour l’algèbre , C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 657-660 Zbl0467.22011
 - C. Torossian, Sur la conjecture combinatoire de Kashiwara-Vergne, J. Lie Theory 12 (2002), 597-616 Zbl1012.17002MR1923789
 - M. Vergne, Le centre de l’algèbre enveloppante et la formule de Campbell-Hausdorff, C. R. Acad. Sci. Paris, Série I Math. 329 (1999), 767-772 Zbl0989.17007
 - D. Wigner, An identity in the free Lie algebra, Proc. Amer. Math. Soc. (1989), 639-640 Zbl0682.17007MR969322
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.