Stable norms of non-orientable surfaces
Florent Balacheff[1]; Daniel Massart[2]
- [1] Université de Neuchâtel Institut de mathématiques Rue Émile Argand 11 CP 158 2009 Neuchâtel (Switzerland)
- [2] Université Montpellier II Institut de Mathématiques et de Modélisation de Montpellier UMR 5149 Case Courier 051 Place Eugène Bataillon 34095 Montpellier Cedex 5 (France)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 4, page 1337-1369
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBalacheff, Florent, and Massart, Daniel. "Stable norms of non-orientable surfaces." Annales de l’institut Fourier 58.4 (2008): 1337-1369. <http://eudml.org/doc/10350>.
@article{Balacheff2008,
abstract = {We study the stable norm on the first homology of a closed non-orientable surface equipped with a Riemannian metric. We prove that in every conformal class there exists a metric whose stable norm is polyhedral. Furthermore the stable norm is never strictly convex if the first Betti number of the surface is greater than two.},
affiliation = {Université de Neuchâtel Institut de mathématiques Rue Émile Argand 11 CP 158 2009 Neuchâtel (Switzerland); Université Montpellier II Institut de Mathématiques et de Modélisation de Montpellier UMR 5149 Case Courier 051 Place Eugène Bataillon 34095 Montpellier Cedex 5 (France)},
author = {Balacheff, Florent, Massart, Daniel},
journal = {Annales de l’institut Fourier},
keywords = {Minimizing measures; non-orientable surface; stable norm; minimizing measures},
language = {eng},
number = {4},
pages = {1337-1369},
publisher = {Association des Annales de l’institut Fourier},
title = {Stable norms of non-orientable surfaces},
url = {http://eudml.org/doc/10350},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Balacheff, Florent
AU - Massart, Daniel
TI - Stable norms of non-orientable surfaces
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 4
SP - 1337
EP - 1369
AB - We study the stable norm on the first homology of a closed non-orientable surface equipped with a Riemannian metric. We prove that in every conformal class there exists a metric whose stable norm is polyhedral. Furthermore the stable norm is never strictly convex if the first Betti number of the surface is greater than two.
LA - eng
KW - Minimizing measures; non-orientable surface; stable norm; minimizing measures
UR - http://eudml.org/doc/10350
ER -
References
top- I. Babenko, F. Balacheff, Sur la forme de la boule unité de la norme stable unidimensionnelle, Manuscripta Math. 119 (2006), 347-358 Zbl1082.05509MR2207855
- V. Bangert, Minimal geodesics, Ergodic Theory Dynam. Systems 10 (1990), 263-286 Zbl0676.53055MR1062758
- F. Bonahon, Geodesic laminations on surfaces, Laminations and foliations in dynamics, geometry and topology (Stony Brook, NY, 1998) (2001), 1-37 Zbl0996.53029MR1810534
- M. J. Dias Carneiro, On minimizing measures of the action of autonomous Lagrangians, Nonlinearity 8 (1995), 1077-1085 Zbl0845.58023MR1363400
- G. Contreras, L. Macarini, Gabriel P. Paternain, Periodic orbits for exact magnetic flows on surfaces, Int. Math. Res. Not. (2004), 361-387 Zbl1086.37032MR2036336
- J. Dieudonné, Eléments d’Analyse, 2 (1968), Fasc. XXXI Gauthier-Villars Zbl0189.05502
- H. Farkas, I. Kra, Riemann surfaces, 71 (1992), Springer-Verlag, New York Zbl0764.30001MR1139765
- A. Fathi, Sur la convergence du semi-groupe de Lax-Oleinik, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), 267-270 Zbl1052.37514MR1650261
- H. Federer, Real flat chains, cochains and variational problems, Indiana Univ. Math. J. 24 (1974), 351-407 Zbl0289.49044MR348598
- M. Gromov, Structures métriques pour les variétés riemanniennes, (1981), 1. CEDIC, Paris Zbl0509.53034MR682063
- R. Mañé, Introdução à teoria ergódica, 14 (1983), Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro Zbl0581.28010MR800092
- R. Mañé, On the minimizing measures of Lagrangian dynamical systems, Nonlinearity 5 (1992), 623-638 Zbl0799.58030MR1166538
- D. Massart, Norme stable des surfaces, Thèse de doctorat. Ecole Normale Supérieure de Lyon (1996)
- D. Massart, Stable norms of surfaces: local structure of the unit ball of rational directions, Geom. Funct. Anal. 7 (1997), 996-1010 Zbl0903.58001MR1487751
- John N. Mather, Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z. 207 (1991), 169-207 Zbl0696.58027MR1109661
- G. McShane, I. Rivin, Simple curves on hyperbolic tori, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 1523-1528 Zbl0835.53050MR1340065
- M. Scharlemann, The complex of curves on nonorientable surfaces, J. London Math. Soc. 25 (1982), 171-184 Zbl0479.57005MR645874
- S. Schwartzman, Asymptotic cycles, Ann. of Math. 66 (1957), 270-284 Zbl0207.22603MR88720
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.