A Variational Approach to the Study of the Existence of Invariant Lagrangian Graphs
Bollettino dell'Unione Matematica Italiana (2013)
- Volume: 6, Issue: 2, page 405-440
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topSorrentino, Alfonso. "A Variational Approach to the Study of the Existence of Invariant Lagrangian Graphs." Bollettino dell'Unione Matematica Italiana 6.2 (2013): 405-440. <http://eudml.org/doc/294056>.
@article{Sorrentino2013,
abstract = {This paper surveys some recent results by the author and some collaborators, on the existence of invariant Lagrangian graphs for Tonelli Hamiltonian systems.},
author = {Sorrentino, Alfonso},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {405-440},
publisher = {Unione Matematica Italiana},
title = {A Variational Approach to the Study of the Existence of Invariant Lagrangian Graphs},
url = {http://eudml.org/doc/294056},
volume = {6},
year = {2013},
}
TY - JOUR
AU - Sorrentino, Alfonso
TI - A Variational Approach to the Study of the Existence of Invariant Lagrangian Graphs
JO - Bollettino dell'Unione Matematica Italiana
DA - 2013/6//
PB - Unione Matematica Italiana
VL - 6
IS - 2
SP - 405
EP - 440
AB - This paper surveys some recent results by the author and some collaborators, on the existence of invariant Lagrangian graphs for Tonelli Hamiltonian systems.
LA - eng
UR - http://eudml.org/doc/294056
ER -
References
top- AGOL, IAN, Criteria for virtual fibering. J. Topol., 2 (1) (2008), 269-284. Zbl1148.57023MR2399130DOI10.1112/jtopol/jtn003
- ARNAUD, MARIE-CLAUDE, Fibrés de Green et régularité des graphes -Lagrangiens invariants par un flot de Tonelli. Ann. Henri Poincaré, 9 (5) (2008), 881-926. Zbl1143.70009MR2438501DOI10.1007/s00023-008-0375-7
- ARNAUD, MARIE-CLAUDE, The tiered Aubry set for autonomous Lagrangian functions. Ann. Inst. Fourier (Grenoble), 58 (5) (2008), 1733-1759. Zbl1152.37025MR2445832
- ARNOL'D, VLADIMIR I., Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian. Uspehi Mat. Nauk, 18 (5) (1963), 13-40. MR163025
- ARNOL'D, VLADIMIR I., Mathematical methods of classical mechanicsGraduate Texts in Mathematics, 60 (Springer-Verlag, New York, 1989). MR997295DOI10.1007/978-1-4757-2063-1
- AUBRY, SERGE - LE DAERON, P. Y., The discrete Frenkel-Kontorova model and its extensions. I. Exact results for the ground-states. Phys. D, 8 (3) (1983), 381-422. Zbl1237.37059MR719634DOI10.1016/0167-2789(83)90233-6
- BALACHEFF, FLORENT - MASSART, DANIEL, Stable norms of non-orientable surfaces. Ann. Inst. Fourier (Grenoble) 58, no. 4 (2008), 1337-1369. Zbl1196.37102MR2427962
- BANGERT, VICTOR, Mather sets for twist maps and geodesics on tori. Dyn. Rep.1 (1988), 1-56. Zbl0664.53021MR945963
- BERNARD, PATRICK, Symplectic aspects of Mather theory. Duke Math. J., 136 (3) (2007), 401-420. MR2309170
- BROUWER, LUITZEN E. J., Zur invarianz des n-dimensionalen Gebiets. Math. Ann., 72 (1) (1912), 55-56. Zbl43.0479.03MR1511685DOI10.1007/BF01456889
- BURAGO, DMITRI - IVANOV, SERGEY, Riemannian tori without conjugate points are flat. Geom. Funct. Anal, 4, no. 3 (1994), 259-269. Zbl0808.53038MR1274115DOI10.1007/BF01896241
- BUTLER, LEO T. - PATERNAIN, GABRIEL P., Collective geodesic flows. Ann. Inst. Fourier (Grenoble), 53 (1) (2003), 265-308. Zbl1066.53135MR1973073
- BUTLER, LEO T., A weak Liouville-Arnol'd Theorem. Talk at University of Pittsburgh, January 2011.
- BUTLER, LEO T. - SORRENTINO, ALFONSO, Weak Liouville-Arnol'd Theorems and their implications. Comm. Math. Phys., 315 (1) (2012), 109-133. Zbl1271.37042MR2966941DOI10.1007/s00220-012-1536-6
- CARATHEODORY, CONSTANTIN, Variationsrechnung und partielle Differentialgleichung erster Ordnung. Leipzig-Berlin: B. G. Teubner, 1935. MR1279593
- DIAS CARNEIRO, MARIO J., On minimizing measures of the action of autonomous Lagrangians. Nonlinearity, 8 (6) (1995), 1077-1085. Zbl0845.58023MR1363400
- CONTRERAS, GONZALO - ITURRIAGA, RENATO, Global minimizers of autonomous Lagrangians. Preprint, 1999. Zbl0957.37065MR1720372
- DUNFIELD, NATHAN M. - THURSTON, WILLIAM P., The virtual Haken conjecture: experiments and examples. Geom. Topol., 7 (2003), 399-441. Zbl1037.57015MR1988291DOI10.2140/gt.2003.7.399
- FATHI, ALBERT, The Weak KAM theorem in Lagrangian dynamics. Cambridge University Press (to appear). Zbl0885.58022
- FATHI, ALBERT - GIULIANI, ALESSANDRO - SORRENTINO, ALFONSO, Uniqueness of Invariant Lagrangian graphs in a homology or a cohomology class. Ann. Sc. Norm. Super. Pisa Cl. Sci., Vol VIII (4) (2009), 659-680. Zbl1192.37086MR2647908
- HEDLUND, GUSTAV A., Geodesics on a two-dimensional Riemannian manifold with periodic coefficients. Ann. of Math. (2), 33 (4) (1932), 719-739. Zbl0006.32601MR1503086DOI10.2307/1968215
- HEMPEL, JOHN, Homology of coverings. Pacific J. Math., 112 (1) (1984), 83-113. MR739142
- KOLMOGOROV, ANDREY N., On conservation of conditionally periodic motions for a small change in Hamilton's function. Dokl. Akad. Nauk SSSR (N.S.), 98 (1954), 572-530. MR68687
- MADERNA, EZEQUIEL, Invariance of global solutions of Hamilton-Jacobi equation. Bull. Soc. Math. France, 130 (4) (2002), 493-506. Zbl1059.49031MR1947450DOI10.24033/bsmf.2427
- MAÑÉ, RICARDO, On the minimizing measures of Lagrangian dynamical systems. Nonlinearity, 5 (3) (1992), 623-638. Zbl0799.58030MR1166538
- MAÑÉ, RICARDO, Lagrangian flows: the dynamics of globally minimizing orbits. Bol. Soc. Brasil. Mat. (N.S.), 28 (2) (1997), 141-153. Zbl0892.58064MR1479499DOI10.1007/BF01233389
- MASSART, DANIEL, Aubry sets vs Mather sets in two degrees of freedom. Calculus of Variations and PDE, no. 3-4 (2011), 429-460. Zbl1254.37043MR2846262DOI10.1007/s00526-011-0393-z
- MASSART, DANIEL - SORRENTINO, ALFONSO, Differentiability of Mather's average action and integrability on closed surfaces. Nonlinearity, 24 (2011), 1777-1793. Zbl1218.53081MR2793898DOI10.1088/0951-7715/24/6/005
- MATHER, JOHN N., Existence of quasiperiodic orbits for twist homeomorphisms of the annulus. Topology, 21 (4) (1982), 457-467. Zbl0506.58032MR670747DOI10.1016/0040-9383(82)90023-4
- MATHER, JOHN N., A criterion for the nonexistence of invariant circles. Inst. Hautes Études Sci. Publ. Math., 63 (1986), 153-204. Zbl0603.58028MR849654
- MATHER, JOHN N. - FORNI, GIOVANNI, Action minimizing orbits in Hamiltonian systems. Transition to chaos in classical and quantum mechanics. Lectures given at the 3rd session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Montecatini Terme, Italy, July 6-13, 1991. Berlin: Springer-Verlag. Lect. Notes Math.1589, 92-186, 1994. Zbl0822.70011MR1323222DOI10.1007/BFb0074076
- MATHER, JOHN N., Variational construction of orbits of twist diffeomorphisms. J. Amer. Math. Soc., 4 (2) (1991), 207-263. Zbl0737.58029MR1080112DOI10.2307/2939275
- MATHER, JOHN N., Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z., 207 (2) (1991), 169-207. Zbl0696.58027MR1109661DOI10.1007/BF02571383
- MATHER, JOHN N., Variational construction of connecting orbits. Ann. Inst. Fourier (Grenoble), 43 (5) (1993), 1349-1386. Zbl0803.58019MR1275203
- MATHER, JOHN N., Order structure on action minimizing orbits. Symplectic topology and measure preserving dynamical systems. Papers of the AMS-IMS-SIAM joint summer research conference, Snowbird, UT, USA, July 1-5, 2007. Providence, RI: American Mathematical Society (AMS). Contemporary Mathematics512, 41-125, 2010.
- MOSER, JÜRGEN, Convergent series expansions for quasi-periodic motions. Math. Ann., 169 (1967), 136-176. Zbl0149.29903MR208078DOI10.1007/BF01399536
- ROCKAFELLAR, R. TYRELL, Convex analysis. Princeton Mathematical Series, No. 28, Princeton University Press (1970), xviii+451. MR274683
- SCHWARTZMAN, SOL, Asymptotic cycles. Ann. of Math. (2), 66 (1957), 270-284. MR88720DOI10.2307/1969999
- SORRENTINO, ALFONSO, On the integrability of Tonelli Hamiltonians. Trans. Amer. Math. Soc., 363 (10) (2011), 5071-5089. MR2813408DOI10.1090/S0002-9947-2011-05492-9
- SORRENTINO, ALFONSO, Lecture Notes on Mather's theory for Lagrangian systems. Preprint, 2011. Zbl1373.37144MR3633271
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.