A Variational Approach to the Study of the Existence of Invariant Lagrangian Graphs

Alfonso Sorrentino

Bollettino dell'Unione Matematica Italiana (2013)

  • Volume: 6, Issue: 2, page 405-440
  • ISSN: 0392-4041

Abstract

top
This paper surveys some recent results by the author and some collaborators, on the existence of invariant Lagrangian graphs for Tonelli Hamiltonian systems.

How to cite

top

Sorrentino, Alfonso. "A Variational Approach to the Study of the Existence of Invariant Lagrangian Graphs." Bollettino dell'Unione Matematica Italiana 6.2 (2013): 405-440. <http://eudml.org/doc/294056>.

@article{Sorrentino2013,
abstract = {This paper surveys some recent results by the author and some collaborators, on the existence of invariant Lagrangian graphs for Tonelli Hamiltonian systems.},
author = {Sorrentino, Alfonso},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {405-440},
publisher = {Unione Matematica Italiana},
title = {A Variational Approach to the Study of the Existence of Invariant Lagrangian Graphs},
url = {http://eudml.org/doc/294056},
volume = {6},
year = {2013},
}

TY - JOUR
AU - Sorrentino, Alfonso
TI - A Variational Approach to the Study of the Existence of Invariant Lagrangian Graphs
JO - Bollettino dell'Unione Matematica Italiana
DA - 2013/6//
PB - Unione Matematica Italiana
VL - 6
IS - 2
SP - 405
EP - 440
AB - This paper surveys some recent results by the author and some collaborators, on the existence of invariant Lagrangian graphs for Tonelli Hamiltonian systems.
LA - eng
UR - http://eudml.org/doc/294056
ER -

References

top
  1. AGOL, IAN, Criteria for virtual fibering. J. Topol., 2 (1) (2008), 269-284. Zbl1148.57023MR2399130DOI10.1112/jtopol/jtn003
  2. ARNAUD, MARIE-CLAUDE, Fibrés de Green et régularité des graphes C 0 -Lagrangiens invariants par un flot de Tonelli. Ann. Henri Poincaré, 9 (5) (2008), 881-926. Zbl1143.70009MR2438501DOI10.1007/s00023-008-0375-7
  3. ARNAUD, MARIE-CLAUDE, The tiered Aubry set for autonomous Lagrangian functions. Ann. Inst. Fourier (Grenoble), 58 (5) (2008), 1733-1759. Zbl1152.37025MR2445832
  4. ARNOL'D, VLADIMIR I., Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian. Uspehi Mat. Nauk, 18 (5) (1963), 13-40. MR163025
  5. ARNOL'D, VLADIMIR I., Mathematical methods of classical mechanicsGraduate Texts in Mathematics, 60 (Springer-Verlag, New York, 1989). MR997295DOI10.1007/978-1-4757-2063-1
  6. AUBRY, SERGE - LE DAERON, P. Y., The discrete Frenkel-Kontorova model and its extensions. I. Exact results for the ground-states. Phys. D, 8 (3) (1983), 381-422. Zbl1237.37059MR719634DOI10.1016/0167-2789(83)90233-6
  7. BALACHEFF, FLORENT - MASSART, DANIEL, Stable norms of non-orientable surfaces. Ann. Inst. Fourier (Grenoble) 58, no. 4 (2008), 1337-1369. Zbl1196.37102MR2427962
  8. BANGERT, VICTOR, Mather sets for twist maps and geodesics on tori. Dyn. Rep.1 (1988), 1-56. Zbl0664.53021MR945963
  9. BERNARD, PATRICK, Symplectic aspects of Mather theory. Duke Math. J., 136 (3) (2007), 401-420. MR2309170
  10. BROUWER, LUITZEN E. J., Zur invarianz des n-dimensionalen Gebiets. Math. Ann., 72 (1) (1912), 55-56. Zbl43.0479.03MR1511685DOI10.1007/BF01456889
  11. BURAGO, DMITRI - IVANOV, SERGEY, Riemannian tori without conjugate points are flat. Geom. Funct. Anal, 4, no. 3 (1994), 259-269. Zbl0808.53038MR1274115DOI10.1007/BF01896241
  12. BUTLER, LEO T. - PATERNAIN, GABRIEL P., Collective geodesic flows. Ann. Inst. Fourier (Grenoble), 53 (1) (2003), 265-308. Zbl1066.53135MR1973073
  13. BUTLER, LEO T., A weak Liouville-Arnol'd Theorem. Talk at University of Pittsburgh, January 2011. 
  14. BUTLER, LEO T. - SORRENTINO, ALFONSO, Weak Liouville-Arnol'd Theorems and their implications. Comm. Math. Phys., 315 (1) (2012), 109-133. Zbl1271.37042MR2966941DOI10.1007/s00220-012-1536-6
  15. CARATHEODORY, CONSTANTIN, Variationsrechnung und partielle Differentialgleichung erster Ordnung. Leipzig-Berlin: B. G. Teubner, 1935. MR1279593
  16. DIAS CARNEIRO, MARIO J., On minimizing measures of the action of autonomous Lagrangians. Nonlinearity, 8 (6) (1995), 1077-1085. Zbl0845.58023MR1363400
  17. CONTRERAS, GONZALO - ITURRIAGA, RENATO, Global minimizers of autonomous Lagrangians. Preprint, 1999. Zbl0957.37065MR1720372
  18. DUNFIELD, NATHAN M. - THURSTON, WILLIAM P., The virtual Haken conjecture: experiments and examples. Geom. Topol., 7 (2003), 399-441. Zbl1037.57015MR1988291DOI10.2140/gt.2003.7.399
  19. FATHI, ALBERT, The Weak KAM theorem in Lagrangian dynamics. Cambridge University Press (to appear). Zbl0885.58022
  20. FATHI, ALBERT - GIULIANI, ALESSANDRO - SORRENTINO, ALFONSO, Uniqueness of Invariant Lagrangian graphs in a homology or a cohomology class. Ann. Sc. Norm. Super. Pisa Cl. Sci., Vol VIII (4) (2009), 659-680. Zbl1192.37086MR2647908
  21. HEDLUND, GUSTAV A., Geodesics on a two-dimensional Riemannian manifold with periodic coefficients. Ann. of Math. (2), 33 (4) (1932), 719-739. Zbl0006.32601MR1503086DOI10.2307/1968215
  22. HEMPEL, JOHN, Homology of coverings. Pacific J. Math., 112 (1) (1984), 83-113. MR739142
  23. KOLMOGOROV, ANDREY N., On conservation of conditionally periodic motions for a small change in Hamilton's function. Dokl. Akad. Nauk SSSR (N.S.), 98 (1954), 572-530. MR68687
  24. MADERNA, EZEQUIEL, Invariance of global solutions of Hamilton-Jacobi equation. Bull. Soc. Math. France, 130 (4) (2002), 493-506. Zbl1059.49031MR1947450DOI10.24033/bsmf.2427
  25. MAÑÉ, RICARDO, On the minimizing measures of Lagrangian dynamical systems. Nonlinearity, 5 (3) (1992), 623-638. Zbl0799.58030MR1166538
  26. MAÑÉ, RICARDO, Lagrangian flows: the dynamics of globally minimizing orbits. Bol. Soc. Brasil. Mat. (N.S.), 28 (2) (1997), 141-153. Zbl0892.58064MR1479499DOI10.1007/BF01233389
  27. MASSART, DANIEL, Aubry sets vs Mather sets in two degrees of freedom. Calculus of Variations and PDE, no. 3-4 (2011), 429-460. Zbl1254.37043MR2846262DOI10.1007/s00526-011-0393-z
  28. MASSART, DANIEL - SORRENTINO, ALFONSO, Differentiability of Mather's average action and integrability on closed surfaces. Nonlinearity, 24 (2011), 1777-1793. Zbl1218.53081MR2793898DOI10.1088/0951-7715/24/6/005
  29. MATHER, JOHN N., Existence of quasiperiodic orbits for twist homeomorphisms of the annulus. Topology, 21 (4) (1982), 457-467. Zbl0506.58032MR670747DOI10.1016/0040-9383(82)90023-4
  30. MATHER, JOHN N., A criterion for the nonexistence of invariant circles. Inst. Hautes Études Sci. Publ. Math., 63 (1986), 153-204. Zbl0603.58028MR849654
  31. MATHER, JOHN N. - FORNI, GIOVANNI, Action minimizing orbits in Hamiltonian systems. Transition to chaos in classical and quantum mechanics. Lectures given at the 3rd session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Montecatini Terme, Italy, July 6-13, 1991. Berlin: Springer-Verlag. Lect. Notes Math.1589, 92-186, 1994. Zbl0822.70011MR1323222DOI10.1007/BFb0074076
  32. MATHER, JOHN N., Variational construction of orbits of twist diffeomorphisms. J. Amer. Math. Soc., 4 (2) (1991), 207-263. Zbl0737.58029MR1080112DOI10.2307/2939275
  33. MATHER, JOHN N., Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z., 207 (2) (1991), 169-207. Zbl0696.58027MR1109661DOI10.1007/BF02571383
  34. MATHER, JOHN N., Variational construction of connecting orbits. Ann. Inst. Fourier (Grenoble), 43 (5) (1993), 1349-1386. Zbl0803.58019MR1275203
  35. MATHER, JOHN N., Order structure on action minimizing orbits. Symplectic topology and measure preserving dynamical systems. Papers of the AMS-IMS-SIAM joint summer research conference, Snowbird, UT, USA, July 1-5, 2007. Providence, RI: American Mathematical Society (AMS). Contemporary Mathematics512, 41-125, 2010. 
  36. MOSER, JÜRGEN, Convergent series expansions for quasi-periodic motions. Math. Ann., 169 (1967), 136-176. Zbl0149.29903MR208078DOI10.1007/BF01399536
  37. ROCKAFELLAR, R. TYRELL, Convex analysis. Princeton Mathematical Series, No. 28, Princeton University Press (1970), xviii+451. MR274683
  38. SCHWARTZMAN, SOL, Asymptotic cycles. Ann. of Math. (2), 66 (1957), 270-284. MR88720DOI10.2307/1969999
  39. SORRENTINO, ALFONSO, On the integrability of Tonelli Hamiltonians. Trans. Amer. Math. Soc., 363 (10) (2011), 5071-5089. MR2813408DOI10.1090/S0002-9947-2011-05492-9
  40. SORRENTINO, ALFONSO, Lecture Notes on Mather's theory for Lagrangian systems. Preprint, 2011. Zbl1373.37144MR3633271

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.