An interpolation theorem in toric varieties
- [1] 22 rue Jean Prévost 38000 Grenoble (France)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 4, page 1371-1381
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topWeimann, Martin. "An interpolation theorem in toric varieties." Annales de l’institut Fourier 58.4 (2008): 1371-1381. <http://eudml.org/doc/10351>.
@article{Weimann2008,
abstract = {In the spirit of a theorem of Wood, we give necessary and sufficient conditions for a family of germs of analytic hypersurfaces in a smooth projective toric variety $X$ to be interpolated by an algebraic hypersurface with a fixed class in the Picard group of $X$.},
affiliation = {22 rue Jean Prévost 38000 Grenoble (France)},
author = {Weimann, Martin},
journal = {Annales de l’institut Fourier},
keywords = {Toric varieties; interpolation; trace; residues; resultants; toric varieties; interpolations; traces},
language = {eng},
number = {4},
pages = {1371-1381},
publisher = {Association des Annales de l’institut Fourier},
title = {An interpolation theorem in toric varieties},
url = {http://eudml.org/doc/10351},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Weimann, Martin
TI - An interpolation theorem in toric varieties
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 4
SP - 1371
EP - 1381
AB - In the spirit of a theorem of Wood, we give necessary and sufficient conditions for a family of germs of analytic hypersurfaces in a smooth projective toric variety $X$ to be interpolated by an algebraic hypersurface with a fixed class in the Picard group of $X$.
LA - eng
KW - Toric varieties; interpolation; trace; residues; resultants; toric varieties; interpolations; traces
UR - http://eudml.org/doc/10351
ER -
References
top- N. H. Abel, Mémoire sur une propriété générale d’une classe trés étendue de fonctions trancendantes, note présentée à L’Académie des sciences à Paris le 30 Octobre 1826, Oeuvres complètes de Niels Henrik Abel, Christiania 1 (1881), 145-211
- M. Andersson, Residue currents and ideal of holomorphic functions, Bull. Sci. math. (2004), 481-512 Zbl1086.32005MR2074610
- C. A. Berenstein, A. Yger, Residue calculus and effective Nullstellensatz, in American Journal of Mathematics 121 (1999), 723-796 Zbl0944.14002MR1704477
- D. Bernstein, The number of roots of a system of equations, Funct. Anal. Appl. 9 (1975), 183-185 Zbl0328.32001MR435072
- S. Bloch, D. Gieseker, The positivity of the Chern Classes of an ample Vector Bundle, Inventiones math. 12 (1971), 112-117 Zbl0212.53502MR297773
- E. Cattani, A. Dickenstein, A global view of residues in the torus, Journal of Pure and Applied Algebra 117 & 118 (1997), 119-144 Zbl0899.14024MR1457836
- V. Danilov, The geometry of toric varieties, Russian Math. Surveys 33 (1978), 97-154 Zbl0425.14013MR495499
- G. Ewald, Combinatorial convexity and algebraic geometry, 168 (1996), Springer-Verlag, New York Zbl0869.52001MR1418400
- W. Fulton, Introduction to toric varieties, (1993), Princeton U. Press, Princeton, NJ Zbl0813.14039MR1234037
- I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, (1994), Birkhauser, Boston Zbl0827.14036MR1264417
- P. A. Griffiths, Variations on a theorem of Abel, Inventiones math. 35 (1976), 321-390 Zbl0339.14003MR435074
- P. A. Griffiths, J. Harris, Principles of Algebraic Geometry, (1978), Wiley-Intersciences Zbl0408.14001MR507725
- G. Henkin, M. Passare, Abelian differentials on singular varieties and variation on a theorem of Lie-Griffiths, Inventiones math. 135 (1999), 297-328 Zbl0932.32012MR1666771
- A. Khovanskii, Newton polyedra and the Euler-Jacobi formula, Russian Math. Surveys 33 (1978), 237-238 Zbl0449.14010MR526036
- P. Pedersen, B. Sturmfels, Product formulas for resultants and Chow forms, Math. Z. 214 (1993), 377-396 Zbl0792.13006MR1245200
- A. Shchuplev, Toric varieties and residues, Doctoral thesis, Stockholm University (2007)
- A. Vidras, A. Yger, On some generalizations of Jacobi’s residue formula, Ann. scient. Ec. Norm. Sup, 4 ème série 34 (2001), 131-157 Zbl0991.32003
- M. Weimann, Concavity, Abel-transform and the Abel-inverse theorem in smooth complete toric varieties Zbl1285.14056
- M. Weimann, La trace en géométrie projective et torique, Thesis, Université Bordeaux (2006)
- M. Weimann, Trace et Calcul résiduel : une nouvelle version du théorème d’Abel-inverse et formes abéliennes, Annales de la faculté des sciences de Toulouse Sér. 6 16 (2007), 397-424 Zbl1132.32002
- J. A. Wood, A simple criterion for an analytic hypersurface to be algebraic, Duke Mathematical Journal 51 (1984), 235-237 Zbl0584.14021MR744296
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.