An interpolation theorem in toric varieties

Martin Weimann[1]

  • [1] 22 rue Jean Prévost 38000 Grenoble (France)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 4, page 1371-1381
  • ISSN: 0373-0956

Abstract

top
In the spirit of a theorem of Wood, we give necessary and sufficient conditions for a family of germs of analytic hypersurfaces in a smooth projective toric variety X to be interpolated by an algebraic hypersurface with a fixed class in the Picard group of X .

How to cite

top

Weimann, Martin. "An interpolation theorem in toric varieties." Annales de l’institut Fourier 58.4 (2008): 1371-1381. <http://eudml.org/doc/10351>.

@article{Weimann2008,
abstract = {In the spirit of a theorem of Wood, we give necessary and sufficient conditions for a family of germs of analytic hypersurfaces in a smooth projective toric variety $X$ to be interpolated by an algebraic hypersurface with a fixed class in the Picard group of $X$.},
affiliation = {22 rue Jean Prévost 38000 Grenoble (France)},
author = {Weimann, Martin},
journal = {Annales de l’institut Fourier},
keywords = {Toric varieties; interpolation; trace; residues; resultants; toric varieties; interpolations; traces},
language = {eng},
number = {4},
pages = {1371-1381},
publisher = {Association des Annales de l’institut Fourier},
title = {An interpolation theorem in toric varieties},
url = {http://eudml.org/doc/10351},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Weimann, Martin
TI - An interpolation theorem in toric varieties
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 4
SP - 1371
EP - 1381
AB - In the spirit of a theorem of Wood, we give necessary and sufficient conditions for a family of germs of analytic hypersurfaces in a smooth projective toric variety $X$ to be interpolated by an algebraic hypersurface with a fixed class in the Picard group of $X$.
LA - eng
KW - Toric varieties; interpolation; trace; residues; resultants; toric varieties; interpolations; traces
UR - http://eudml.org/doc/10351
ER -

References

top
  1. N. H. Abel, Mémoire sur une propriété générale d’une classe trés étendue de fonctions trancendantes, note présentée à L’Académie des sciences à Paris le 30 Octobre 1826, Oeuvres complètes de Niels Henrik Abel, Christiania 1 (1881), 145-211 
  2. M. Andersson, Residue currents and ideal of holomorphic functions, Bull. Sci. math. (2004), 481-512 Zbl1086.32005MR2074610
  3. C. A. Berenstein, A. Yger, Residue calculus and effective Nullstellensatz, in American Journal of Mathematics 121 (1999), 723-796 Zbl0944.14002MR1704477
  4. D. Bernstein, The number of roots of a system of equations, Funct. Anal. Appl. 9 (1975), 183-185 Zbl0328.32001MR435072
  5. S. Bloch, D. Gieseker, The positivity of the Chern Classes of an ample Vector Bundle, Inventiones math. 12 (1971), 112-117 Zbl0212.53502MR297773
  6. E. Cattani, A. Dickenstein, A global view of residues in the torus, Journal of Pure and Applied Algebra 117 & 118 (1997), 119-144 Zbl0899.14024MR1457836
  7. V. Danilov, The geometry of toric varieties, Russian Math. Surveys 33 (1978), 97-154 Zbl0425.14013MR495499
  8. G. Ewald, Combinatorial convexity and algebraic geometry, 168 (1996), Springer-Verlag, New York Zbl0869.52001MR1418400
  9. W. Fulton, Introduction to toric varieties, (1993), Princeton U. Press, Princeton, NJ Zbl0813.14039MR1234037
  10. I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, (1994), Birkhauser, Boston Zbl0827.14036MR1264417
  11. P. A. Griffiths, Variations on a theorem of Abel, Inventiones math. 35 (1976), 321-390 Zbl0339.14003MR435074
  12. P. A. Griffiths, J. Harris, Principles of Algebraic Geometry, (1978), Wiley-Intersciences Zbl0408.14001MR507725
  13. G. Henkin, M. Passare, Abelian differentials on singular varieties and variation on a theorem of Lie-Griffiths, Inventiones math. 135 (1999), 297-328 Zbl0932.32012MR1666771
  14. A. Khovanskii, Newton polyedra and the Euler-Jacobi formula, Russian Math. Surveys 33 (1978), 237-238 Zbl0449.14010MR526036
  15. P. Pedersen, B. Sturmfels, Product formulas for resultants and Chow forms, Math. Z. 214 (1993), 377-396 Zbl0792.13006MR1245200
  16. A. Shchuplev, Toric varieties and residues, Doctoral thesis, Stockholm University (2007) 
  17. A. Vidras, A. Yger, On some generalizations of Jacobi’s residue formula, Ann. scient. Ec. Norm. Sup, 4 ème série 34 (2001), 131-157 Zbl0991.32003
  18. M. Weimann, Concavity, Abel-transform and the Abel-inverse theorem in smooth complete toric varieties Zbl1285.14056
  19. M. Weimann, La trace en géométrie projective et torique, Thesis, Université Bordeaux (2006) 
  20. M. Weimann, Trace et Calcul résiduel : une nouvelle version du théorème d’Abel-inverse et formes abéliennes, Annales de la faculté des sciences de Toulouse Sér. 6 16 (2007), 397-424 Zbl1132.32002
  21. J. A. Wood, A simple criterion for an analytic hypersurface to be algebraic, Duke Mathematical Journal 51 (1984), 235-237 Zbl0584.14021MR744296

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.