The intrinsic torsion of almost quaternion-Hermitian manifolds
Francisco Martín Cabrera[1]; Andrew Swann[2]
- [1] University of La Laguna Department of Fundamental Mathematics 38200 La Laguna Tenerife (Spain)
- [2] University of Southern Denmark Department of Mathematics and Computer Science Campusvej 55 5230 Odense M (Denmark)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 5, page 1455-1497
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMartín Cabrera, Francisco, and Swann, Andrew. "The intrinsic torsion of almost quaternion-Hermitian manifolds." Annales de l’institut Fourier 58.5 (2008): 1455-1497. <http://eudml.org/doc/10354>.
@article{MartínCabrera2008,
abstract = {We study the intrinsic torsion of almost quaternion-Hermitian manifolds via the exterior algebra. In particular, we show how it is determined by particular three-forms formed from simple combinations of the exterior derivatives of the local Kähler forms. This gives a practical method to compute the intrinsic torsion and is applied in a number of examples. In addition we find simple characterisations of HKT and QKT geometries entirely in the exterior algebra and compute how the intrinsic torsion changes under a twist construction.},
affiliation = {University of La Laguna Department of Fundamental Mathematics 38200 La Laguna Tenerife (Spain); University of Southern Denmark Department of Mathematics and Computer Science Campusvej 55 5230 Odense M (Denmark)},
author = {Martín Cabrera, Francisco, Swann, Andrew},
journal = {Annales de l’institut Fourier},
keywords = {Almost Hermitian structure; almost quaternion-Hermitian structure; $G$-structure; intrinsic torsion; $G$-connection; HKT-manifold; QKT-manifold; almost Hermitian structure; -structure; -connection},
language = {eng},
number = {5},
pages = {1455-1497},
publisher = {Association des Annales de l’institut Fourier},
title = {The intrinsic torsion of almost quaternion-Hermitian manifolds},
url = {http://eudml.org/doc/10354},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Martín Cabrera, Francisco
AU - Swann, Andrew
TI - The intrinsic torsion of almost quaternion-Hermitian manifolds
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 5
SP - 1455
EP - 1497
AB - We study the intrinsic torsion of almost quaternion-Hermitian manifolds via the exterior algebra. In particular, we show how it is determined by particular three-forms formed from simple combinations of the exterior derivatives of the local Kähler forms. This gives a practical method to compute the intrinsic torsion and is applied in a number of examples. In addition we find simple characterisations of HKT and QKT geometries entirely in the exterior algebra and compute how the intrinsic torsion changes under a twist construction.
LA - eng
KW - Almost Hermitian structure; almost quaternion-Hermitian structure; $G$-structure; intrinsic torsion; $G$-connection; HKT-manifold; QKT-manifold; almost Hermitian structure; -structure; -connection
UR - http://eudml.org/doc/10354
ER -
References
top- L. Auslander, L. Green, F. Hahn, Flows on homogeneous spaces, (1963), Princeton University Press, Princeton, N.J. Zbl0106.36802
- Marcel Berger, Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France 83 (1955), 279-330 Zbl0068.36002
- Theodor Bröcker, Tammo tom Dieck, Representations of compact Lie groups, 98 (1985), Springer-Verlag, New York Zbl0581.22009MR781344
- Richard Cleyton, Andrew Swann, Einstein metrics via intrinsic or parallel torsion, Math. Z. 247 (2004), 513-528 Zbl1069.53041MR2114426
- Luis A. Cordero, Marisa Fernández, Alfred Gray, Minimal models in differential geometry, Proceedings of the Workshop on Recent Topics in Differential Geometry (Puerto de la Cruz, 1990) 32 (1991), 31-41, Univ. La Laguna, La Laguna Zbl0736.53037MR1127451
- Luis A. Cordero, Marisa Fernández, Manuel de León, On the quaternionic Heisenberg group, Boll. Un. Mat. Ital. A (7) 1 (1987), 31-37 Zbl0613.53016MR880099
- Luis A. Cordero, Marisa Fernández, Manuel de León, Martín Saralegui, Compact symplectic four solvmanifolds without polarizations, Ann. Fac. Sci. Toulouse Math. (5) 10 (1989), 193-198 Zbl0659.53032MR1425485
- M. Fernández, B. R. Moreiras, Symmetry properties of the covariant derivative of the fundamental -form of a quaternionic manifold, Riv. Mat. Univ. Parma (4) 12 (1986), 249-256 (1987) Zbl0631.53029MR913047
- Marisa Fernández, Alfred Gray, Compact symplectic solvmanifolds not admitting complex structures, Geom. Dedicata 34 (1990), 295-299 Zbl0703.53030MR1066580
- S. J. Gates, C. M. Hull, M. Roček, Twisted multiplets and new supersymmetric nonlinear -models, Nuclear Phys. B 248 (1984), 157-186 MR776369
- Gueo Grantcharov, Yat Sun Poon, Geometry of hyper-Kähler connections with torsion, Comm. Math. Phys. 213 (2000), 19-37 Zbl0993.53016MR1782143
- Alfred Gray, Minimal varieties and almost Hermitian submanifolds, Michigan Math. J. 12 (1965), 273-287 Zbl0132.16702MR184185
- Alfred Gray, Luis M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4) 123 (1980), 35-58 Zbl0444.53032MR581924
- N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55 (1987), 59-126 Zbl0634.53045MR887284
- P. S. Howe, A. Opfermann, G. Papadopoulos, Twistor spaces for QKT manifolds, Comm. Math. Phys. 197 (1998), 713-727 Zbl0941.53031MR1652783
- P. S. Howe, G. Papadopoulos, Further remarks on the geometry of two-dimensional nonlinear models, Classical Quantum Gravity 5 (1988), 1647-1661 Zbl0654.53071MR973266
- P. S. Howe, G. Papadopoulos, Twistor spaces for hyper-Kähler manifolds with torsion, Phys. Lett. B 379 (1996), 80-86 MR1396267
- Stefan Ivanov, Geometry of quaternionic Kähler connections with torsion, J. Geom. Phys. 41 (2002), 235-257 Zbl1007.53054MR1877929
- Dominic Joyce, Compact hypercomplex and quaternionic manifolds, J. Differential Geom. 35 (1992), 743-761 Zbl0735.53050MR1163458
- Francisco Martín Cabrera, Almost quaternion-Hermitian manifolds, Ann. Global Anal. Geom. 25 (2004), 277-301 Zbl1061.53030MR2053763
- Francisco Martín Cabrera, Andrew Swann, Almost Hermitian structures and quaternionic geometries, Differential Geom. Appl. 21 (2004), 199-214 Zbl1062.53034MR2073825
- Morio Obata, Affine connections on manifolds with almost complex, quaternion or Hermitian structure, Jap. J. Math. 26 (1956), 43-77 Zbl0089.17203MR95290
- S. M. Salamon, Quaternionic Kähler manifolds, Invent. Math. 67 (1982), 143-171 Zbl0486.53048MR664330
- S. M. Salamon, Differential geometry of quaternionic manifolds, Ann. Sci. École Norm. Sup. (4) 19 (1986), 31-55 Zbl0616.53023MR860810
- S. M. Salamon, Riemannian geometry and holonomy groups, 201 (1989), Longman Scientific & Technical, Harlow Zbl0685.53001
- S. M. Salamon, Almost parallel structures, Global differential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000) 288 (2001), 162-181, Amer. Math. Soc., Providence, RI Zbl1008.53043MR1871007
- Andrew Swann, Aspects symplectiques de la géométrie quaternionique, C. R. Acad. Sci. Paris Sér. I Math. 308 (1989), 225-228 Zbl0661.53023MR986384
- Andrew Swann, T is for twist, Proceedings of the XV International Workshop on Geometry and Physics (Puerto de la Cruz, 2006) 10 (2007), 83-94, Spanish Royal Mathematical Society, Madrid Zbl1229.53074
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.