The intrinsic torsion of almost quaternion-Hermitian manifolds

Francisco Martín Cabrera[1]; Andrew Swann[2]

  • [1] University of La Laguna Department of Fundamental Mathematics 38200 La Laguna Tenerife (Spain)
  • [2] University of Southern Denmark Department of Mathematics and Computer Science Campusvej 55 5230 Odense M (Denmark)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 5, page 1455-1497
  • ISSN: 0373-0956

Abstract

top
We study the intrinsic torsion of almost quaternion-Hermitian manifolds via the exterior algebra. In particular, we show how it is determined by particular three-forms formed from simple combinations of the exterior derivatives of the local Kähler forms. This gives a practical method to compute the intrinsic torsion and is applied in a number of examples. In addition we find simple characterisations of HKT and QKT geometries entirely in the exterior algebra and compute how the intrinsic torsion changes under a twist construction.

How to cite

top

Martín Cabrera, Francisco, and Swann, Andrew. "The intrinsic torsion of almost quaternion-Hermitian manifolds." Annales de l’institut Fourier 58.5 (2008): 1455-1497. <http://eudml.org/doc/10354>.

@article{MartínCabrera2008,
abstract = {We study the intrinsic torsion of almost quaternion-Hermitian manifolds via the exterior algebra. In particular, we show how it is determined by particular three-forms formed from simple combinations of the exterior derivatives of the local Kähler forms. This gives a practical method to compute the intrinsic torsion and is applied in a number of examples. In addition we find simple characterisations of HKT and QKT geometries entirely in the exterior algebra and compute how the intrinsic torsion changes under a twist construction.},
affiliation = {University of La Laguna Department of Fundamental Mathematics 38200 La Laguna Tenerife (Spain); University of Southern Denmark Department of Mathematics and Computer Science Campusvej 55 5230 Odense M (Denmark)},
author = {Martín Cabrera, Francisco, Swann, Andrew},
journal = {Annales de l’institut Fourier},
keywords = {Almost Hermitian structure; almost quaternion-Hermitian structure; $G$-structure; intrinsic torsion; $G$-connection; HKT-manifold; QKT-manifold; almost Hermitian structure; -structure; -connection},
language = {eng},
number = {5},
pages = {1455-1497},
publisher = {Association des Annales de l’institut Fourier},
title = {The intrinsic torsion of almost quaternion-Hermitian manifolds},
url = {http://eudml.org/doc/10354},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Martín Cabrera, Francisco
AU - Swann, Andrew
TI - The intrinsic torsion of almost quaternion-Hermitian manifolds
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 5
SP - 1455
EP - 1497
AB - We study the intrinsic torsion of almost quaternion-Hermitian manifolds via the exterior algebra. In particular, we show how it is determined by particular three-forms formed from simple combinations of the exterior derivatives of the local Kähler forms. This gives a practical method to compute the intrinsic torsion and is applied in a number of examples. In addition we find simple characterisations of HKT and QKT geometries entirely in the exterior algebra and compute how the intrinsic torsion changes under a twist construction.
LA - eng
KW - Almost Hermitian structure; almost quaternion-Hermitian structure; $G$-structure; intrinsic torsion; $G$-connection; HKT-manifold; QKT-manifold; almost Hermitian structure; -structure; -connection
UR - http://eudml.org/doc/10354
ER -

References

top
  1. L. Auslander, L. Green, F. Hahn, Flows on homogeneous spaces, (1963), Princeton University Press, Princeton, N.J. Zbl0106.36802
  2. Marcel Berger, Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France 83 (1955), 279-330 Zbl0068.36002
  3. Theodor Bröcker, Tammo tom Dieck, Representations of compact Lie groups, 98 (1985), Springer-Verlag, New York Zbl0581.22009MR781344
  4. Richard Cleyton, Andrew Swann, Einstein metrics via intrinsic or parallel torsion, Math. Z. 247 (2004), 513-528 Zbl1069.53041MR2114426
  5. Luis A. Cordero, Marisa Fernández, Alfred Gray, Minimal models in differential geometry, Proceedings of the Workshop on Recent Topics in Differential Geometry (Puerto de la Cruz, 1990) 32 (1991), 31-41, Univ. La Laguna, La Laguna Zbl0736.53037MR1127451
  6. Luis A. Cordero, Marisa Fernández, Manuel de León, On the quaternionic Heisenberg group, Boll. Un. Mat. Ital. A (7) 1 (1987), 31-37 Zbl0613.53016MR880099
  7. Luis A. Cordero, Marisa Fernández, Manuel de León, Martín Saralegui, Compact symplectic four solvmanifolds without polarizations, Ann. Fac. Sci. Toulouse Math. (5) 10 (1989), 193-198 Zbl0659.53032MR1425485
  8. M. Fernández, B. R. Moreiras, Symmetry properties of the covariant derivative of the fundamental 4 -form of a quaternionic manifold, Riv. Mat. Univ. Parma (4) 12 (1986), 249-256 (1987) Zbl0631.53029MR913047
  9. Marisa Fernández, Alfred Gray, Compact symplectic solvmanifolds not admitting complex structures, Geom. Dedicata 34 (1990), 295-299 Zbl0703.53030MR1066580
  10. S. J. Gates, C. M. Hull, M. Roček, Twisted multiplets and new supersymmetric nonlinear σ -models, Nuclear Phys. B 248 (1984), 157-186 MR776369
  11. Gueo Grantcharov, Yat Sun Poon, Geometry of hyper-Kähler connections with torsion, Comm. Math. Phys. 213 (2000), 19-37 Zbl0993.53016MR1782143
  12. Alfred Gray, Minimal varieties and almost Hermitian submanifolds, Michigan Math. J. 12 (1965), 273-287 Zbl0132.16702MR184185
  13. Alfred Gray, Luis M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4) 123 (1980), 35-58 Zbl0444.53032MR581924
  14. N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55 (1987), 59-126 Zbl0634.53045MR887284
  15. P. S. Howe, A. Opfermann, G. Papadopoulos, Twistor spaces for QKT manifolds, Comm. Math. Phys. 197 (1998), 713-727 Zbl0941.53031MR1652783
  16. P. S. Howe, G. Papadopoulos, Further remarks on the geometry of two-dimensional nonlinear σ models, Classical Quantum Gravity 5 (1988), 1647-1661 Zbl0654.53071MR973266
  17. P. S. Howe, G. Papadopoulos, Twistor spaces for hyper-Kähler manifolds with torsion, Phys. Lett. B 379 (1996), 80-86 MR1396267
  18. Stefan Ivanov, Geometry of quaternionic Kähler connections with torsion, J. Geom. Phys. 41 (2002), 235-257 Zbl1007.53054MR1877929
  19. Dominic Joyce, Compact hypercomplex and quaternionic manifolds, J. Differential Geom. 35 (1992), 743-761 Zbl0735.53050MR1163458
  20. Francisco Martín Cabrera, Almost quaternion-Hermitian manifolds, Ann. Global Anal. Geom. 25 (2004), 277-301 Zbl1061.53030MR2053763
  21. Francisco Martín Cabrera, Andrew Swann, Almost Hermitian structures and quaternionic geometries, Differential Geom. Appl. 21 (2004), 199-214 Zbl1062.53034MR2073825
  22. Morio Obata, Affine connections on manifolds with almost complex, quaternion or Hermitian structure, Jap. J. Math. 26 (1956), 43-77 Zbl0089.17203MR95290
  23. S. M. Salamon, Quaternionic Kähler manifolds, Invent. Math. 67 (1982), 143-171 Zbl0486.53048MR664330
  24. S. M. Salamon, Differential geometry of quaternionic manifolds, Ann. Sci. École Norm. Sup. (4) 19 (1986), 31-55 Zbl0616.53023MR860810
  25. S. M. Salamon, Riemannian geometry and holonomy groups, 201 (1989), Longman Scientific & Technical, Harlow Zbl0685.53001
  26. S. M. Salamon, Almost parallel structures, Global differential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000) 288 (2001), 162-181, Amer. Math. Soc., Providence, RI Zbl1008.53043MR1871007
  27. Andrew Swann, Aspects symplectiques de la géométrie quaternionique, C. R. Acad. Sci. Paris Sér. I Math. 308 (1989), 225-228 Zbl0661.53023MR986384
  28. Andrew Swann, T is for twist, Proceedings of the XV International Workshop on Geometry and Physics (Puerto de la Cruz, 2006) 10 (2007), 83-94, Spanish Royal Mathematical Society, Madrid Zbl1229.53074

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.