Compact symplectic four solvmanifolds without polarizations
Luis A. Cordero; Marisa Fernández; Manuel De León; Martín Saralegui
Annales de la Faculté des sciences de Toulouse : Mathématiques (1989)
- Volume: 10, Issue: 2, page 193-198
- ISSN: 0240-2963
Access Full Article
topHow to cite
topCordero, Luis A., et al. "Compact symplectic four solvmanifolds without polarizations." Annales de la Faculté des sciences de Toulouse : Mathématiques 10.2 (1989): 193-198. <http://eudml.org/doc/73230>.
@article{Cordero1989,
author = {Cordero, Luis A., Fernández, Marisa, De León, Manuel, Saralegui, Martín},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Kähler polarization; symplectic manifolds; solvmanifold; Kähler manifold},
language = {eng},
number = {2},
pages = {193-198},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Compact symplectic four solvmanifolds without polarizations},
url = {http://eudml.org/doc/73230},
volume = {10},
year = {1989},
}
TY - JOUR
AU - Cordero, Luis A.
AU - Fernández, Marisa
AU - De León, Manuel
AU - Saralegui, Martín
TI - Compact symplectic four solvmanifolds without polarizations
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1989
PB - UNIVERSITE PAUL SABATIER
VL - 10
IS - 2
SP - 193
EP - 198
LA - eng
KW - Kähler polarization; symplectic manifolds; solvmanifold; Kähler manifold
UR - http://eudml.org/doc/73230
ER -
References
top- [1] Auslander ( L.), Green ( L.), Hahn ( F.).- Flows on Homogeneous Spaces. Annals of Math. Studies53, Princeton Univ. Press, 1963. Zbl0106.36802MR167569
- [2] Deligne ( P.), Griffiths ( P.), Morgan ( J.), Sullivan ( D.).- Real homotopy theory of Kähler manifolds. Invent Math.. 29, 1975, p. 245-274. Zbl0312.55011MR382702
- [3] Fernández ( M.), Gotay ( M.J.), Gray ( A.).— Compact parallelizable four dimensional symplectic and complex manifolds. Proc. Amer. Math. Soc.103, 1988, p. 1209-1212. Zbl0656.53034MR955011
- [4] Fernández ( M.), Gray ( A.).- Compact symplectic four dimensional solvmanifolds not admitting complex structures. (Preprint).
- [5] Fernández ( M.), de LEÓN ( M.).- Compact symplectic four dimensional manifolds no admitting polarizations. (Preprint).
- [6] Gotay ( M.J.).- A class of non-polarizable symplectic manifolds. Monatshefte für Math.. 103, 1987, p. 27-30. Zbl0608.53032MR875349
- [7] Mc Duff ( D.).— Examples of simply connected symplectic non-Kählerian manifolds. J. Diff. Geometry20, 1984, p. 267-277. Zbl0567.53031MR772133
- [8] Kodaira ( K.).— On the structure of compact complex analytic surfaces, I. Amer. J. Math.86, 1964, p. 751-798. Zbl0137.17501MR187255
- [9] Simms ( D.J.).— Geometric quantization of energy levels in the Kepler problem. Symp. Math.14, 1974, p. 125-137. Zbl0306.53038MR385925
- [10] Sniatycki ( J.).- Geometric Quantization and Quantum Mechanics. Applied Mathematical Sciences Series30, Springer-Verlag, New York, 1980. Zbl0429.58007MR554085
- [11] Vaisman ( I.).— The Bott obstruction to the existence of nice polarizations. Mh. Math.92, 1981, p. 231-238. Zbl0459.53028MR638166
- [12] Weinstein ( A.).— Lecture on Symplectic Manifolds. CBMS Reg. Conf. Ser. Math.29, Amer. Math. Soc., Providence, R.I., 1977. Zbl0406.53031MR464312
- [13] Woodhouse ( N.M.J.).— Geometric Quantization. Clarendon Press, Oxford, 1980. Zbl0458.58003MR605306
- [14] Yau ( S.T.).— Parallelizable manifolds without complex structure. Topology15, 1976, p. 51- 53. Zbl0331.32013MR397030
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.