Compact symplectic four solvmanifolds without polarizations

Luis A. Cordero; Marisa Fernández; Manuel De León; Martín Saralegui

Annales de la Faculté des sciences de Toulouse : Mathématiques (1989)

  • Volume: 10, Issue: 2, page 193-198
  • ISSN: 0240-2963

How to cite

top

Cordero, Luis A., et al. "Compact symplectic four solvmanifolds without polarizations." Annales de la Faculté des sciences de Toulouse : Mathématiques 10.2 (1989): 193-198. <http://eudml.org/doc/73230>.

@article{Cordero1989,
author = {Cordero, Luis A., Fernández, Marisa, De León, Manuel, Saralegui, Martín},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Kähler polarization; symplectic manifolds; solvmanifold; Kähler manifold},
language = {eng},
number = {2},
pages = {193-198},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Compact symplectic four solvmanifolds without polarizations},
url = {http://eudml.org/doc/73230},
volume = {10},
year = {1989},
}

TY - JOUR
AU - Cordero, Luis A.
AU - Fernández, Marisa
AU - De León, Manuel
AU - Saralegui, Martín
TI - Compact symplectic four solvmanifolds without polarizations
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1989
PB - UNIVERSITE PAUL SABATIER
VL - 10
IS - 2
SP - 193
EP - 198
LA - eng
KW - Kähler polarization; symplectic manifolds; solvmanifold; Kähler manifold
UR - http://eudml.org/doc/73230
ER -

References

top
  1. [1] Auslander ( L.), Green ( L.), Hahn ( F.).- Flows on Homogeneous Spaces. Annals of Math. Studies53, Princeton Univ. Press, 1963. Zbl0106.36802MR167569
  2. [2] Deligne ( P.), Griffiths ( P.), Morgan ( J.), Sullivan ( D.).- Real homotopy theory of Kähler manifolds. Invent Math.. 29, 1975, p. 245-274. Zbl0312.55011MR382702
  3. [3] Fernández ( M.), Gotay ( M.J.), Gray ( A.).— Compact parallelizable four dimensional symplectic and complex manifolds. Proc. Amer. Math. Soc.103, 1988, p. 1209-1212. Zbl0656.53034MR955011
  4. [4] Fernández ( M.), Gray ( A.).- Compact symplectic four dimensional solvmanifolds not admitting complex structures. (Preprint). 
  5. [5] Fernández ( M.), de LEÓN ( M.).- Compact symplectic four dimensional manifolds no admitting polarizations. (Preprint). 
  6. [6] Gotay ( M.J.).- A class of non-polarizable symplectic manifolds. Monatshefte für Math.. 103, 1987, p. 27-30. Zbl0608.53032MR875349
  7. [7] Mc Duff ( D.).— Examples of simply connected symplectic non-Kählerian manifolds. J. Diff. Geometry20, 1984, p. 267-277. Zbl0567.53031MR772133
  8. [8] Kodaira ( K.).— On the structure of compact complex analytic surfaces, I. Amer. J. Math.86, 1964, p. 751-798. Zbl0137.17501MR187255
  9. [9] Simms ( D.J.).— Geometric quantization of energy levels in the Kepler problem. Symp. Math.14, 1974, p. 125-137. Zbl0306.53038MR385925
  10. [10] Sniatycki ( J.).- Geometric Quantization and Quantum Mechanics. Applied Mathematical Sciences Series30, Springer-Verlag, New York, 1980. Zbl0429.58007MR554085
  11. [11] Vaisman ( I.).— The Bott obstruction to the existence of nice polarizations. Mh. Math.92, 1981, p. 231-238. Zbl0459.53028MR638166
  12. [12] Weinstein ( A.).— Lecture on Symplectic Manifolds. CBMS Reg. Conf. Ser. Math.29, Amer. Math. Soc., Providence, R.I., 1977. Zbl0406.53031MR464312
  13. [13] Woodhouse ( N.M.J.).— Geometric Quantization. Clarendon Press, Oxford, 1980. Zbl0458.58003MR605306
  14. [14] Yau ( S.T.).— Parallelizable manifolds without complex structure. Topology15, 1976, p. 51- 53. Zbl0331.32013MR397030

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.