Moduli Spaces of PU ( 2 ) -Instantons on Minimal Class VII Surfaces with b 2 = 1

Konrad Schöbel[1]

  • [1] Université de Provence Centre de Mathématiques et Informatique Laboratoire d’Analyse, Topologie et Probabilités 39 rue F. Joliot Curie 13453 Marseille cedex 13 (France)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 5, page 1691-1722
  • ISSN: 0373-0956

Abstract

top
We describe explicitly the moduli spaces g pst ( S , E ) of polystable holomorphic structures with det 𝒦 on a rank two vector bundle E with c 1 ( E ) = c 1 ( K ) and c 2 ( E ) = 0 for all minimal class VII surfaces S with b 2 ( S ) = 1 and with respect to all possible Gauduchon metrics g . These surfaces S are non-elliptic and non-Kähler complex surfaces and have recently been completely classified. When S is a half or parabolic Inoue surface, g pst ( S , E ) is always a compact one-dimensional complex disc. When S is an Enoki surface, one obtains a complex disc with finitely many transverse self-intersections whose number becomes arbitrarily large when g varies in the space of Gauduchon metrics. g pst ( S , E ) can be identified with a moduli space of PU ( 2 ) -instantons. The moduli spaces of simple bundles of the above type lead to interesting examples of non-Hausdorff singular one-dimensional complex spaces.

How to cite

top

Schöbel, Konrad. "Moduli Spaces of ${\rm PU}(2)$-Instantons on Minimal Class VII Surfaces with $b_2=1$." Annales de l’institut Fourier 58.5 (2008): 1691-1722. <http://eudml.org/doc/10359>.

@article{Schöbel2008,
abstract = {We describe explicitly the moduli spaces $\mathscr\{M\}^\{\rm pst\}_g(S,E)$ of polystable holomorphic structures $\mathcal\{E\}$ with $\det \mathcal\{E\}\cong \mathcal\{K\}$ on a rank two vector bundle $E$ with $c_1(E)=c_1(K)$ and $c_2(E)=0$ for all minimal class VII surfaces $S$ with $b_2(S)=1$ and with respect to all possible Gauduchon metrics $g$. These surfaces $S$ are non-elliptic and non-Kähler complex surfaces and have recently been completely classified. When $S$ is a half or parabolic Inoue surface, $\mathscr\{M\}^\{\rm pst\}_g(S,E)$ is always a compact one-dimensional complex disc. When $S$ is an Enoki surface, one obtains a complex disc with finitely many transverse self-intersections whose number becomes arbitrarily large when $g$ varies in the space of Gauduchon metrics. $\mathscr\{M\}^\{\rm pst\}_g(S,E)$ can be identified with a moduli space of $\{\rm PU\}(2)$-instantons. The moduli spaces of simple bundles of the above type lead to interesting examples of non-Hausdorff singular one-dimensional complex spaces.},
affiliation = {Université de Provence Centre de Mathématiques et Informatique Laboratoire d’Analyse, Topologie et Probabilités 39 rue F. Joliot Curie 13453 Marseille cedex 13 (France)},
author = {Schöbel, Konrad},
journal = {Annales de l’institut Fourier},
keywords = {Moduli spaces; holomorphic bundles; complex surfaces; instantons; moduli spaces; gauge theory; classification; class VII surfaces},
language = {eng},
number = {5},
pages = {1691-1722},
publisher = {Association des Annales de l’institut Fourier},
title = {Moduli Spaces of $\{\rm PU\}(2)$-Instantons on Minimal Class VII Surfaces with $b_2=1$},
url = {http://eudml.org/doc/10359},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Schöbel, Konrad
TI - Moduli Spaces of ${\rm PU}(2)$-Instantons on Minimal Class VII Surfaces with $b_2=1$
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 5
SP - 1691
EP - 1722
AB - We describe explicitly the moduli spaces $\mathscr{M}^{\rm pst}_g(S,E)$ of polystable holomorphic structures $\mathcal{E}$ with $\det \mathcal{E}\cong \mathcal{K}$ on a rank two vector bundle $E$ with $c_1(E)=c_1(K)$ and $c_2(E)=0$ for all minimal class VII surfaces $S$ with $b_2(S)=1$ and with respect to all possible Gauduchon metrics $g$. These surfaces $S$ are non-elliptic and non-Kähler complex surfaces and have recently been completely classified. When $S$ is a half or parabolic Inoue surface, $\mathscr{M}^{\rm pst}_g(S,E)$ is always a compact one-dimensional complex disc. When $S$ is an Enoki surface, one obtains a complex disc with finitely many transverse self-intersections whose number becomes arbitrarily large when $g$ varies in the space of Gauduchon metrics. $\mathscr{M}^{\rm pst}_g(S,E)$ can be identified with a moduli space of ${\rm PU}(2)$-instantons. The moduli spaces of simple bundles of the above type lead to interesting examples of non-Hausdorff singular one-dimensional complex spaces.
LA - eng
KW - Moduli spaces; holomorphic bundles; complex surfaces; instantons; moduli spaces; gauge theory; classification; class VII surfaces
UR - http://eudml.org/doc/10359
ER -

References

top
  1. W. P. Barth, K. Hulek, C. A. M. Peters, A. Van de Ven, Compact Complex Surfaces, 4 (2004), Springer-Verlag, Berlin Zbl1036.14016MR2030225
  2. F. A. Bogomolov, Surfaces of class VII 0 and affine geometry, Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 46 (1982), 710-761, 896 Zbl0527.14029MR670164
  3. P. J. Braam, J. Hurtubise, Instantons on Hopf surfaces and monopoles on solid tori, Journal für reine und angewandte Mathematik 400 (1989), 146-172 Zbl0669.32012MR1013728
  4. V. Brînzănescu, R. Moraru, Stable bundles on non-Kähler elliptic surfaces, Communications in Mathematical Physics 254 (2005), 565-580 Zbl1071.32009MR2126483
  5. N. P. Buchdahl, Stable 2 -bundles on Hirzebruch surfaces, Mathematische Zeitschrift 194 (1987), 143-152 Zbl0627.14028MR871226
  6. N. P. Buchdahl, A Nakai-Moishezon criterion for non-Kähler surfaces, Université de Grenoble. Annales de l’Institut Fourier 50 (2000), 1533-1538 Zbl0964.32014
  7. G. Dloussky, Structure des surfaces de Kato, Mémoires de la Société Mathématique de France. Nouvelle Série 112 (1984), 1-120 Zbl0543.32012MR763959
  8. G. Dloussky, K. Oeljeklaus, M. Toma, Class VII 0 surfaces with b 2 curves, The Tôhoku Mathematical Journal. Second Series 55 (2003), 283-309 Zbl1034.32012MR1979500
  9. R. Y. Donagi, Principal bundles on elliptic fibrations, The Asian Journal of Mathematics 1 (1997), 214-223 Zbl0927.14006MR1491982
  10. S. K. Donaldson, Irrationality and the h -cobordism conjecture, Journal of Differential Geometry 26 (1987), 141-168 Zbl0631.57010MR892034
  11. S. K. Donaldson, P. B. Kronheimer, The geometry of four-manifolds, (1990), The Clarendon Press Oxford University Press, New York Zbl0820.57002MR1079726
  12. G. Elencwajg, O. Forster, Vector bundles on manifolds without divisors and a theorem on deformations, Université de Grenoble. Annales de l’Institut Fourier 32 (1982), 25-51 (1983) Zbl0488.32012
  13. I. Enoki, On surfaces of class VII 0 with curves, Japan Academy. Proceedings. Series A. Mathematical Sciences 56 (1980), 275-279 Zbl0462.32012MR581470
  14. I. Enoki, Surfaces of class VII 0 with curves, The Tôhoku Mathematical Journal. Second Series 33 (1981), 453-492 Zbl0476.14013MR643229
  15. R. Friedman, Rank two vector bundles over regular elliptic surfaces, Inventiones Mathematicae 96 (1989), 283-332 Zbl0671.14006MR989699
  16. R. Friedman, J. Morgan, E. Witten, Vector bundles over elliptic fibrations, Journal of Algebraic Geometry 8 (1999), 279-401 Zbl0937.14004MR1675162
  17. R. Friedman, J. W. Morgan, Smooth four-manifolds and complex surfaces, 27 (1994), Springer-Verlag, Berlin Zbl0817.14017MR1288304
  18. P. Gauduchon, La 1 -forme de torsion d’une variété hermitienne compacte, Mathematische Annalen 267 (1984), 495-518 Zbl0523.53059
  19. P. Griffiths, J. Harris, Principles of Algebraic Geometry, (1994), John Wiley & Sons Inc., New York Zbl0836.14001MR1288523
  20. M. Inoue, On surfaces of class VII 0 , Inventiones Mathematicae 24 (1974), 269-310 Zbl0283.32019MR342734
  21. M. Inoue, New surfaces with no meromorphic functions. II, Complex analysis and algebraic geometry (1977), 91-106, Iwanami Shoten, Tokyo Zbl0365.14011MR442297
  22. M. Kato, Compact complex manifolds containing “global” spherical shells. I, Proceedings of the International Symposium on Algebraic Geometry (Kyoto University, Kyoto, 1977) (1978), 45-84, Kinokuniya Book Store, Tokyo Zbl0421.32010
  23. S. Kobayashi, Differential geometry of complex vector bundles, 15 (1987), Princeton University Press, Princeton, NJ Zbl0708.53002MR909698
  24. K. Kodaira, On the structure of compact complex analytic surfaces. I, American Journal of Mathematics 86 (1964), 751-798 Zbl0137.17501MR187255
  25. K. Kodaira, On the structure of compact complex analytic surfaces. II, American Journal of Mathematics 88 (1966), 682-721 Zbl0193.37701MR205280
  26. D. Kotschick, On manifolds homeomorphic to C P 2 # 8 C P ¯ 2 , Inventiones Mathematicae 95 (1989), 591-600 Zbl0691.57008MR979367
  27. J. Li, Algebraic geometric interpretation of Donaldson’s polynomial invariants, Journal of Differential Geometry 37 (1993), 417-466 Zbl0809.14006
  28. J. Li, S. T. Yau, F. Zheng, On projectively flat Hermitian manifolds, Communications in Analysis and Geometry 2 (1994), 103-109 Zbl0837.53053MR1312680
  29. M. Lübke, A. Teleman, The Kobayashi-Hitchin correspondence, (1995), World Scientific Publishing Co. Inc., River Edge, NJ Zbl0849.32020MR1370660
  30. R. Moraru, Integrable systems associated to a Hopf surface, Canadian Journal of Mathematics 55 (2003), 609-635 Zbl1058.37043MR1980616
  31. I. Nakamura, On surfaces of class VII 0 with curves, Inventiones Mathematicae 78 (1984), 393-443 Zbl0575.14033MR768987
  32. C. Okonek, A. Van de Ven, Stable bundles and differentiable structures on certain elliptic surfaces, Inventiones Mathematicae 86 (1986), 357-370 Zbl0613.14018MR856849
  33. C. Okonek, A. Van de Ven, Γ -type-invariants associated to PU ( 2 ) -bundles and the differentiable structure of Barlow’s surface, Inventiones Mathematicae 95 (1989), 601-614 Zbl0691.57007
  34. A. Teleman, Projectively flat surfaces and Bogomolov’s theorem on class VII 0 surfaces, International Journal of Mathematics 5 (1994), 253-264 Zbl0803.53038
  35. A. Teleman, Moduli spaces of stable bundles on non-Kählerian elliptic fibre bundles over curves, Expositiones Mathematicae. International Journal 16 (1998), 193-248 Zbl0933.14022MR1630918
  36. A. Teleman, Donaldson theory on non-Kählerian surfaces and class VII surfaces with b 2 = 1 , Inventiones Mathematicae 162 (2005), 493-521 Zbl1093.32006MR2198220
  37. A. Teleman, The pseudo-effective cone of a non-Kählerian surface and applications, Mathematische Annalen 335 (2006), 965-989 Zbl1096.32011MR2232025
  38. A. Teleman, Harmonic sections in sphere bundles, normal neighborhoods of reduction loci, and instanton moduli spaces on definite 4-manifolds, Geometry and Topology 11 (2007), 1681-1730 Zbl1138.57030MR2350464
  39. A. Teleman, Instantons and curves on class VII surfaces, (2007) Zbl1231.14028
  40. M. Toma, Compact moduli spaces of stable sheaves over non-algebraic surfaces, Documenta Mathematica 6 (2001), 11-29 Zbl0973.32007MR1816525
  41. M. Toma, Vector bundles on blown-up Hopf surfaces, (2006) Zbl1272.32015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.