Moduli Spaces of -Instantons on Minimal Class VII Surfaces with
- [1] Université de Provence Centre de Mathématiques et Informatique Laboratoire d’Analyse, Topologie et Probabilités 39 rue F. Joliot Curie 13453 Marseille cedex 13 (France)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 5, page 1691-1722
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topSchöbel, Konrad. "Moduli Spaces of ${\rm PU}(2)$-Instantons on Minimal Class VII Surfaces with $b_2=1$." Annales de l’institut Fourier 58.5 (2008): 1691-1722. <http://eudml.org/doc/10359>.
@article{Schöbel2008,
abstract = {We describe explicitly the moduli spaces $\mathscr\{M\}^\{\rm pst\}_g(S,E)$ of polystable holomorphic structures $\mathcal\{E\}$ with $\det \mathcal\{E\}\cong \mathcal\{K\}$ on a rank two vector bundle $E$ with $c_1(E)=c_1(K)$ and $c_2(E)=0$ for all minimal class VII surfaces $S$ with $b_2(S)=1$ and with respect to all possible Gauduchon metrics $g$. These surfaces $S$ are non-elliptic and non-Kähler complex surfaces and have recently been completely classified. When $S$ is a half or parabolic Inoue surface, $\mathscr\{M\}^\{\rm pst\}_g(S,E)$ is always a compact one-dimensional complex disc. When $S$ is an Enoki surface, one obtains a complex disc with finitely many transverse self-intersections whose number becomes arbitrarily large when $g$ varies in the space of Gauduchon metrics. $\mathscr\{M\}^\{\rm pst\}_g(S,E)$ can be identified with a moduli space of $\{\rm PU\}(2)$-instantons. The moduli spaces of simple bundles of the above type lead to interesting examples of non-Hausdorff singular one-dimensional complex spaces.},
affiliation = {Université de Provence Centre de Mathématiques et Informatique Laboratoire d’Analyse, Topologie et Probabilités 39 rue F. Joliot Curie 13453 Marseille cedex 13 (France)},
author = {Schöbel, Konrad},
journal = {Annales de l’institut Fourier},
keywords = {Moduli spaces; holomorphic bundles; complex surfaces; instantons; moduli spaces; gauge theory; classification; class VII surfaces},
language = {eng},
number = {5},
pages = {1691-1722},
publisher = {Association des Annales de l’institut Fourier},
title = {Moduli Spaces of $\{\rm PU\}(2)$-Instantons on Minimal Class VII Surfaces with $b_2=1$},
url = {http://eudml.org/doc/10359},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Schöbel, Konrad
TI - Moduli Spaces of ${\rm PU}(2)$-Instantons on Minimal Class VII Surfaces with $b_2=1$
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 5
SP - 1691
EP - 1722
AB - We describe explicitly the moduli spaces $\mathscr{M}^{\rm pst}_g(S,E)$ of polystable holomorphic structures $\mathcal{E}$ with $\det \mathcal{E}\cong \mathcal{K}$ on a rank two vector bundle $E$ with $c_1(E)=c_1(K)$ and $c_2(E)=0$ for all minimal class VII surfaces $S$ with $b_2(S)=1$ and with respect to all possible Gauduchon metrics $g$. These surfaces $S$ are non-elliptic and non-Kähler complex surfaces and have recently been completely classified. When $S$ is a half or parabolic Inoue surface, $\mathscr{M}^{\rm pst}_g(S,E)$ is always a compact one-dimensional complex disc. When $S$ is an Enoki surface, one obtains a complex disc with finitely many transverse self-intersections whose number becomes arbitrarily large when $g$ varies in the space of Gauduchon metrics. $\mathscr{M}^{\rm pst}_g(S,E)$ can be identified with a moduli space of ${\rm PU}(2)$-instantons. The moduli spaces of simple bundles of the above type lead to interesting examples of non-Hausdorff singular one-dimensional complex spaces.
LA - eng
KW - Moduli spaces; holomorphic bundles; complex surfaces; instantons; moduli spaces; gauge theory; classification; class VII surfaces
UR - http://eudml.org/doc/10359
ER -
References
top- W. P. Barth, K. Hulek, C. A. M. Peters, A. Van de Ven, Compact Complex Surfaces, 4 (2004), Springer-Verlag, Berlin Zbl1036.14016MR2030225
- F. A. Bogomolov, Surfaces of class and affine geometry, Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 46 (1982), 710-761, 896 Zbl0527.14029MR670164
- P. J. Braam, J. Hurtubise, Instantons on Hopf surfaces and monopoles on solid tori, Journal für reine und angewandte Mathematik 400 (1989), 146-172 Zbl0669.32012MR1013728
- V. Brînzănescu, R. Moraru, Stable bundles on non-Kähler elliptic surfaces, Communications in Mathematical Physics 254 (2005), 565-580 Zbl1071.32009MR2126483
- N. P. Buchdahl, Stable -bundles on Hirzebruch surfaces, Mathematische Zeitschrift 194 (1987), 143-152 Zbl0627.14028MR871226
- N. P. Buchdahl, A Nakai-Moishezon criterion for non-Kähler surfaces, Université de Grenoble. Annales de l’Institut Fourier 50 (2000), 1533-1538 Zbl0964.32014
- G. Dloussky, Structure des surfaces de Kato, Mémoires de la Société Mathématique de France. Nouvelle Série 112 (1984), 1-120 Zbl0543.32012MR763959
- G. Dloussky, K. Oeljeklaus, M. Toma, Class surfaces with curves, The Tôhoku Mathematical Journal. Second Series 55 (2003), 283-309 Zbl1034.32012MR1979500
- R. Y. Donagi, Principal bundles on elliptic fibrations, The Asian Journal of Mathematics 1 (1997), 214-223 Zbl0927.14006MR1491982
- S. K. Donaldson, Irrationality and the -cobordism conjecture, Journal of Differential Geometry 26 (1987), 141-168 Zbl0631.57010MR892034
- S. K. Donaldson, P. B. Kronheimer, The geometry of four-manifolds, (1990), The Clarendon Press Oxford University Press, New York Zbl0820.57002MR1079726
- G. Elencwajg, O. Forster, Vector bundles on manifolds without divisors and a theorem on deformations, Université de Grenoble. Annales de l’Institut Fourier 32 (1982), 25-51 (1983) Zbl0488.32012
- I. Enoki, On surfaces of class with curves, Japan Academy. Proceedings. Series A. Mathematical Sciences 56 (1980), 275-279 Zbl0462.32012MR581470
- I. Enoki, Surfaces of class with curves, The Tôhoku Mathematical Journal. Second Series 33 (1981), 453-492 Zbl0476.14013MR643229
- R. Friedman, Rank two vector bundles over regular elliptic surfaces, Inventiones Mathematicae 96 (1989), 283-332 Zbl0671.14006MR989699
- R. Friedman, J. Morgan, E. Witten, Vector bundles over elliptic fibrations, Journal of Algebraic Geometry 8 (1999), 279-401 Zbl0937.14004MR1675162
- R. Friedman, J. W. Morgan, Smooth four-manifolds and complex surfaces, 27 (1994), Springer-Verlag, Berlin Zbl0817.14017MR1288304
- P. Gauduchon, La -forme de torsion d’une variété hermitienne compacte, Mathematische Annalen 267 (1984), 495-518 Zbl0523.53059
- P. Griffiths, J. Harris, Principles of Algebraic Geometry, (1994), John Wiley & Sons Inc., New York Zbl0836.14001MR1288523
- M. Inoue, On surfaces of class , Inventiones Mathematicae 24 (1974), 269-310 Zbl0283.32019MR342734
- M. Inoue, New surfaces with no meromorphic functions. II, Complex analysis and algebraic geometry (1977), 91-106, Iwanami Shoten, Tokyo Zbl0365.14011MR442297
- M. Kato, Compact complex manifolds containing “global” spherical shells. I, Proceedings of the International Symposium on Algebraic Geometry (Kyoto University, Kyoto, 1977) (1978), 45-84, Kinokuniya Book Store, Tokyo Zbl0421.32010
- S. Kobayashi, Differential geometry of complex vector bundles, 15 (1987), Princeton University Press, Princeton, NJ Zbl0708.53002MR909698
- K. Kodaira, On the structure of compact complex analytic surfaces. I, American Journal of Mathematics 86 (1964), 751-798 Zbl0137.17501MR187255
- K. Kodaira, On the structure of compact complex analytic surfaces. II, American Journal of Mathematics 88 (1966), 682-721 Zbl0193.37701MR205280
- D. Kotschick, On manifolds homeomorphic to , Inventiones Mathematicae 95 (1989), 591-600 Zbl0691.57008MR979367
- J. Li, Algebraic geometric interpretation of Donaldson’s polynomial invariants, Journal of Differential Geometry 37 (1993), 417-466 Zbl0809.14006
- J. Li, S. T. Yau, F. Zheng, On projectively flat Hermitian manifolds, Communications in Analysis and Geometry 2 (1994), 103-109 Zbl0837.53053MR1312680
- M. Lübke, A. Teleman, The Kobayashi-Hitchin correspondence, (1995), World Scientific Publishing Co. Inc., River Edge, NJ Zbl0849.32020MR1370660
- R. Moraru, Integrable systems associated to a Hopf surface, Canadian Journal of Mathematics 55 (2003), 609-635 Zbl1058.37043MR1980616
- I. Nakamura, On surfaces of class with curves, Inventiones Mathematicae 78 (1984), 393-443 Zbl0575.14033MR768987
- C. Okonek, A. Van de Ven, Stable bundles and differentiable structures on certain elliptic surfaces, Inventiones Mathematicae 86 (1986), 357-370 Zbl0613.14018MR856849
- C. Okonek, A. Van de Ven, -type-invariants associated to -bundles and the differentiable structure of Barlow’s surface, Inventiones Mathematicae 95 (1989), 601-614 Zbl0691.57007
- A. Teleman, Projectively flat surfaces and Bogomolov’s theorem on class surfaces, International Journal of Mathematics 5 (1994), 253-264 Zbl0803.53038
- A. Teleman, Moduli spaces of stable bundles on non-Kählerian elliptic fibre bundles over curves, Expositiones Mathematicae. International Journal 16 (1998), 193-248 Zbl0933.14022MR1630918
- A. Teleman, Donaldson theory on non-Kählerian surfaces and class VII surfaces with , Inventiones Mathematicae 162 (2005), 493-521 Zbl1093.32006MR2198220
- A. Teleman, The pseudo-effective cone of a non-Kählerian surface and applications, Mathematische Annalen 335 (2006), 965-989 Zbl1096.32011MR2232025
- A. Teleman, Harmonic sections in sphere bundles, normal neighborhoods of reduction loci, and instanton moduli spaces on definite 4-manifolds, Geometry and Topology 11 (2007), 1681-1730 Zbl1138.57030MR2350464
- A. Teleman, Instantons and curves on class VII surfaces, (2007) Zbl1231.14028
- M. Toma, Compact moduli spaces of stable sheaves over non-algebraic surfaces, Documenta Mathematica 6 (2001), 11-29 Zbl0973.32007MR1816525
- M. Toma, Vector bundles on blown-up Hopf surfaces, (2006) Zbl1272.32015
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.