Page 1 Next

Displaying 1 – 20 of 159

Showing per page

A footnote to a paper by Noma

Antonio Lanteri, Francesco Russo (1993)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let E be a globally generated ample vector bundle of rank 2 on a complex projective smooth surface X . By extending a recent result by A. Noma, we classify pairs X , E as above satisfying c 2 E = 2 .

ACM bundles on general hypersurfaces in P5 of low degree.

Luca Chiantini, Carlo K. Madonna (2005)

Collectanea Mathematica

In this paper we show that on a general hypersurface of degree r = 3,4,5,6 in P5 a rank 2 vector bundle ε splits if and only if h1ε(n) = h2ε(n) = 0 for all n ∈ Z. Similar results for r = 1,2 were obtained in [15], [16] and [2].

Algebraic complete integrability of an integrable system of Beauville

Jun-Muk Hwang, Yasunari Nagai (2008)

Annales de l’institut Fourier

We show that the Beauville’s integrable system on a ten dimensional moduli space of sheaves on a K3 surface constructed via a moduli space of stable sheaves on cubic threefolds is algebraically completely integrable, using O’Grady’s construction of a symplectic resolution of the moduli space of sheaves on a K3.

Bubble tree compactification of moduli spaces of vector bundles on surfaces

Dimitri Markushevich, Alexander Tikhomirov, Günther Trautmann (2012)

Open Mathematics

We announce some results on compactifying moduli spaces of rank 2 vector bundles on surfaces by spaces of vector bundles on trees of surfaces. This is thought as an algebraic counterpart of the so-called bubbling of vector bundles and connections in differential geometry. The new moduli spaces are algebraic spaces arising as quotients by group actions according to a result of Kollár. As an example, the compactification of the space of stable rank 2 vector bundles with Chern classes c 1 = 0, c 1...

Currently displaying 1 – 20 of 159

Page 1 Next