The tiered Aubry set for autonomous Lagrangian functions

Marie-Claude Arnaud[1]

  • [1] Université d’Avignon et des Pays de Vaucluse Laboratoire d’Analyse non linéaire et Géométrie (EA 2151) 84 018 Avignon (France)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 5, page 1733-1759
  • ISSN: 0373-0956

Abstract

top
Let L : T M be a Tonelli Lagrangian function (with M compact and connected and dim M 2 ). The tiered Aubry set (resp. Mañé set) 𝒜 T ( L ) (resp. 𝒩 T ( L ) ) is the union of the Aubry sets (resp. Mañé sets) 𝒜 ( L + λ ) (resp. 𝒩 ( L + λ ) ) for λ closed 1-form. Then1.the set 𝒩 T ( L ) is closed, connected and if dim H 1 ( M ) 2 , its intersection with any energy level is connected and chain transitive;2.for L generic in the Mañé sense, the sets 𝒜 T ( L ) ¯ and 𝒩 T ( L ) ¯ have no interior;3.if the interior of 𝒜 T ( L ) ¯ is non empty, it contains a dense subset of periodic points.We then give an example of an explicit Tonelli Lagrangian function satisfying 2 and an example proving that when M = 𝕋 2 , the closure of the tiered Aubry set and the closure of the union of the K.A.M. tori may be different.

How to cite

top

Arnaud, Marie-Claude. "The tiered Aubry set for autonomous Lagrangian functions." Annales de l’institut Fourier 58.5 (2008): 1733-1759. <http://eudml.org/doc/10361>.

@article{Arnaud2008,
abstract = {Let $L\colon TM \rightarrow \{\mathbb\{R\}\}$ be a Tonelli Lagrangian function (with $M$ compact and connected and $\dim M\ge 2$). The tiered Aubry set (resp. Mañé set) $\mathcal\{A\}^T(L)$ (resp. $\mathcal\{N\}^T(L)$) is the union of the Aubry sets (resp. Mañé sets) $\mathcal\{A\}(L+\lambda )$ (resp. $\mathcal\{N\}(L+\lambda )$) for $\lambda $ closed 1-form. Then1.the set is closed, connected and if , its intersection with any energy level is connected and chain transitive;2.for generic in the Mañé sense, the sets and have no interior;3.if the interior of is non empty, it contains a dense subset of periodic points.We then give an example of an explicit Tonelli Lagrangian function satisfying 2 and an example proving that when $M=\mathbb\{T\}^2$, the closure of the tiered Aubry set and the closure of the union of the K.A.M. tori may be different.},
affiliation = {Université d’Avignon et des Pays de Vaucluse Laboratoire d’Analyse non linéaire et Géométrie (EA 2151) 84 018 Avignon (France)},
author = {Arnaud, Marie-Claude},
journal = {Annales de l’institut Fourier},
keywords = {Lagrangian dynamics; Hamiltonian dynamics; Aubry-Mather theory; Mañé set; Tonelli Lagrangian function; Aubry set},
language = {eng},
number = {5},
pages = {1733-1759},
publisher = {Association des Annales de l’institut Fourier},
title = {The tiered Aubry set for autonomous Lagrangian functions},
url = {http://eudml.org/doc/10361},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Arnaud, Marie-Claude
TI - The tiered Aubry set for autonomous Lagrangian functions
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 5
SP - 1733
EP - 1759
AB - Let $L\colon TM \rightarrow {\mathbb{R}}$ be a Tonelli Lagrangian function (with $M$ compact and connected and $\dim M\ge 2$). The tiered Aubry set (resp. Mañé set) $\mathcal{A}^T(L)$ (resp. $\mathcal{N}^T(L)$) is the union of the Aubry sets (resp. Mañé sets) $\mathcal{A}(L+\lambda )$ (resp. $\mathcal{N}(L+\lambda )$) for $\lambda $ closed 1-form. Then1.the set is closed, connected and if , its intersection with any energy level is connected and chain transitive;2.for generic in the Mañé sense, the sets and have no interior;3.if the interior of is non empty, it contains a dense subset of periodic points.We then give an example of an explicit Tonelli Lagrangian function satisfying 2 and an example proving that when $M=\mathbb{T}^2$, the closure of the tiered Aubry set and the closure of the union of the K.A.M. tori may be different.
LA - eng
KW - Lagrangian dynamics; Hamiltonian dynamics; Aubry-Mather theory; Mañé set; Tonelli Lagrangian function; Aubry set
UR - http://eudml.org/doc/10361
ER -

References

top
  1. M.-C. Arnaud, Hyperbolic periodic orbits and Mather sets in certain symmetric cases, Ergodic Theory Dynam. Systems 26 (2006), 939-959 Zbl1118.37030MR2246586
  2. Marie-Claude Arnaud, Création de points périodiques de tous types au voisinage des tores KAM, Bull. Soc. Math. France 123 (1995), 591-603 Zbl0853.58046MR1373949
  3. M. J. Dias Carneiro, On minimizing measures of the action of autonomous Lagrangians, Nonlinearity 8 (1995), 1077-1085 Zbl0845.58023MR1363400
  4. G. Contreras, Action potential and weak KAM solutions, Calc. Var. Partial Differential Equations 13 (2001), 427-458 Zbl0993.37030MR1867936
  5. Gonzalo Contreras, Jorge Delgado, Renato Iturriaga, Lagrangian flows: the dynamics of globally minimizing orbits. II, Bol. Soc. Brasil. Mat. (N.S.) 28 (1997), 155-196 Zbl0892.58065MR1479500
  6. Gonzalo Contreras, Renato Iturriaga, Convex Hamiltonians without conjugate points, Ergodic Theory Dynam. Systems 19 (1999), 901-952 Zbl1044.37046MR1709426
  7. Gonzalo Contreras, Renato Iturriaga, Global minimizers of autonomous Lagrangians, (1999), Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro Zbl0957.37065
  8. Gonzalo Contreras, Gabriel P. Paternain, Connecting orbits between static classes for generic Lagrangian systems, Topology 41 (2002), 645-666 Zbl1047.37042MR1905833
  9. Albert Fathi, Weak K.A.M. theorems, Book in preparation 
  10. M.-R. Herman, On the dynamics of Lagrangian tori invariant by symplectic diffeomorphisms, Progress in variational methods in Hamiltonian systems and elliptic equations (L’Aquila, 1990) 243 (1992), 92-112, Longman Sci. Tech., Harlow Zbl0789.58037
  11. Michael-R. Herman, Sur les courbes invariantes par les difféomorphismes de l’anneau. Vol. 1, 103 (1983), Société Mathématique de France, Paris Zbl0532.58011
  12. Ricardo Mañé, Generic properties and problems of minimizing measures of Lagrangian systems, Nonlinearity 9 (1996), 273-310 Zbl0886.58037MR1384478
  13. Ricardo Mañé, Lagrangian flows: the dynamics of globally minimizing orbits, International Conference on Dynamical Systems (Montevideo, 1995) 362 (1996), 120-131, Longman, Harlow Zbl0870.58026MR1460800
  14. John N. Mather, Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z. 207 (1991), 169-207 Zbl0696.58027MR1109661
  15. John N. Mather, Variational construction of orbits of twist diffeomorphisms, J. Amer. Math. Soc. 4 (1991), 207-263 Zbl0737.58029MR1080112
  16. John N. Mather, Examples of Aubry sets, Ergodic Theory Dynam. Systems 24 (2004), 1667-1723 Zbl1090.37047MR2104599

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.