The tiered Aubry set for autonomous Lagrangian functions
- [1] Université d’Avignon et des Pays de Vaucluse Laboratoire d’Analyse non linéaire et Géométrie (EA 2151) 84 018 Avignon (France)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 5, page 1733-1759
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topArnaud, Marie-Claude. "The tiered Aubry set for autonomous Lagrangian functions." Annales de l’institut Fourier 58.5 (2008): 1733-1759. <http://eudml.org/doc/10361>.
@article{Arnaud2008,
abstract = {Let $L\colon TM \rightarrow \{\mathbb\{R\}\}$ be a Tonelli Lagrangian function (with $M$ compact and connected and $\dim M\ge 2$). The tiered Aubry set (resp. Mañé set) $\mathcal\{A\}^T(L)$ (resp. $\mathcal\{N\}^T(L)$) is the union of the Aubry sets (resp. Mañé sets) $\mathcal\{A\}(L+\lambda )$ (resp. $\mathcal\{N\}(L+\lambda )$) for $\lambda $ closed 1-form. Then1.the set is closed, connected and if , its intersection with any energy level is connected and chain transitive;2.for generic in the Mañé sense, the sets and have no interior;3.if the interior of is non empty, it contains a dense subset of periodic points.We then give an example of an explicit Tonelli Lagrangian function satisfying 2 and an example proving that when $M=\mathbb\{T\}^2$, the closure of the tiered Aubry set and the closure of the union of the K.A.M. tori may be different.},
affiliation = {Université d’Avignon et des Pays de Vaucluse Laboratoire d’Analyse non linéaire et Géométrie (EA 2151) 84 018 Avignon (France)},
author = {Arnaud, Marie-Claude},
journal = {Annales de l’institut Fourier},
keywords = {Lagrangian dynamics; Hamiltonian dynamics; Aubry-Mather theory; Mañé set; Tonelli Lagrangian function; Aubry set},
language = {eng},
number = {5},
pages = {1733-1759},
publisher = {Association des Annales de l’institut Fourier},
title = {The tiered Aubry set for autonomous Lagrangian functions},
url = {http://eudml.org/doc/10361},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Arnaud, Marie-Claude
TI - The tiered Aubry set for autonomous Lagrangian functions
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 5
SP - 1733
EP - 1759
AB - Let $L\colon TM \rightarrow {\mathbb{R}}$ be a Tonelli Lagrangian function (with $M$ compact and connected and $\dim M\ge 2$). The tiered Aubry set (resp. Mañé set) $\mathcal{A}^T(L)$ (resp. $\mathcal{N}^T(L)$) is the union of the Aubry sets (resp. Mañé sets) $\mathcal{A}(L+\lambda )$ (resp. $\mathcal{N}(L+\lambda )$) for $\lambda $ closed 1-form. Then1.the set is closed, connected and if , its intersection with any energy level is connected and chain transitive;2.for generic in the Mañé sense, the sets and have no interior;3.if the interior of is non empty, it contains a dense subset of periodic points.We then give an example of an explicit Tonelli Lagrangian function satisfying 2 and an example proving that when $M=\mathbb{T}^2$, the closure of the tiered Aubry set and the closure of the union of the K.A.M. tori may be different.
LA - eng
KW - Lagrangian dynamics; Hamiltonian dynamics; Aubry-Mather theory; Mañé set; Tonelli Lagrangian function; Aubry set
UR - http://eudml.org/doc/10361
ER -
References
top- M.-C. Arnaud, Hyperbolic periodic orbits and Mather sets in certain symmetric cases, Ergodic Theory Dynam. Systems 26 (2006), 939-959 Zbl1118.37030MR2246586
- Marie-Claude Arnaud, Création de points périodiques de tous types au voisinage des tores KAM, Bull. Soc. Math. France 123 (1995), 591-603 Zbl0853.58046MR1373949
- M. J. Dias Carneiro, On minimizing measures of the action of autonomous Lagrangians, Nonlinearity 8 (1995), 1077-1085 Zbl0845.58023MR1363400
- G. Contreras, Action potential and weak KAM solutions, Calc. Var. Partial Differential Equations 13 (2001), 427-458 Zbl0993.37030MR1867936
- Gonzalo Contreras, Jorge Delgado, Renato Iturriaga, Lagrangian flows: the dynamics of globally minimizing orbits. II, Bol. Soc. Brasil. Mat. (N.S.) 28 (1997), 155-196 Zbl0892.58065MR1479500
- Gonzalo Contreras, Renato Iturriaga, Convex Hamiltonians without conjugate points, Ergodic Theory Dynam. Systems 19 (1999), 901-952 Zbl1044.37046MR1709426
- Gonzalo Contreras, Renato Iturriaga, Global minimizers of autonomous Lagrangians, (1999), Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro Zbl0957.37065
- Gonzalo Contreras, Gabriel P. Paternain, Connecting orbits between static classes for generic Lagrangian systems, Topology 41 (2002), 645-666 Zbl1047.37042MR1905833
- Albert Fathi, Weak K.A.M. theorems, Book in preparation
- M.-R. Herman, On the dynamics of Lagrangian tori invariant by symplectic diffeomorphisms, Progress in variational methods in Hamiltonian systems and elliptic equations (L’Aquila, 1990) 243 (1992), 92-112, Longman Sci. Tech., Harlow Zbl0789.58037
- Michael-R. Herman, Sur les courbes invariantes par les difféomorphismes de l’anneau. Vol. 1, 103 (1983), Société Mathématique de France, Paris Zbl0532.58011
- Ricardo Mañé, Generic properties and problems of minimizing measures of Lagrangian systems, Nonlinearity 9 (1996), 273-310 Zbl0886.58037MR1384478
- Ricardo Mañé, Lagrangian flows: the dynamics of globally minimizing orbits, International Conference on Dynamical Systems (Montevideo, 1995) 362 (1996), 120-131, Longman, Harlow Zbl0870.58026MR1460800
- John N. Mather, Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z. 207 (1991), 169-207 Zbl0696.58027MR1109661
- John N. Mather, Variational construction of orbits of twist diffeomorphisms, J. Amer. Math. Soc. 4 (1991), 207-263 Zbl0737.58029MR1080112
- John N. Mather, Examples of Aubry sets, Ergodic Theory Dynam. Systems 24 (2004), 1667-1723 Zbl1090.37047MR2104599
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.