Algebraic transfer and action of linear groups on mod 2 divided powers

Tran Ngoc Nam[1]

  • [1] Vietnam National University Department of Mathematics 334 Nguyên Trãi Street Hanoi (Vietnam)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 5, page 1785-1837
  • ISSN: 0373-0956

Abstract

top
We compute the dimension of an algebra with divided powers viewed as a representation of the general linear group, then compute the image of the algebraic transfer in generic degrees, and determine the indecomposable elements of even degree in the polynomial algebra in four variables viewed as a module over the Steenrod algebra.

How to cite

top

Nam, Tran Ngoc. "Transfert algébrique et action du groupe linéaire sur les puissances divisées modulo 2." Annales de l’institut Fourier 58.5 (2008): 1785-1837. <http://eudml.org/doc/10363>.

@article{Nam2008,
abstract = {On détermine la dimension d’une représentation du groupe linéaire définie par un sous-espace vectoriel de l’algèbre à puissances divisées, puis on explicite l’image du transfert algébrique en degré générique et celle du transfert algébrique quadruple, et finalement on identifie les indécomposables de degré pair de l’algèbre polynomiale à quatre variables, vue comme module sur l’algèbre de Steenrod.},
affiliation = {Vietnam National University Department of Mathematics 334 Nguyên Trãi Street Hanoi (Vietnam)},
author = {Nam, Tran Ngoc},
journal = {Annales de l’institut Fourier},
keywords = {Steenrod algebra; linear groups; divided powers},
language = {fre},
number = {5},
pages = {1785-1837},
publisher = {Association des Annales de l’institut Fourier},
title = {Transfert algébrique et action du groupe linéaire sur les puissances divisées modulo 2},
url = {http://eudml.org/doc/10363},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Nam, Tran Ngoc
TI - Transfert algébrique et action du groupe linéaire sur les puissances divisées modulo 2
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 5
SP - 1785
EP - 1837
AB - On détermine la dimension d’une représentation du groupe linéaire définie par un sous-espace vectoriel de l’algèbre à puissances divisées, puis on explicite l’image du transfert algébrique en degré générique et celle du transfert algébrique quadruple, et finalement on identifie les indécomposables de degré pair de l’algèbre polynomiale à quatre variables, vue comme module sur l’algèbre de Steenrod.
LA - fre
KW - Steenrod algebra; linear groups; divided powers
UR - http://eudml.org/doc/10363
ER -

References

top
  1. J. F. Adams, On the structure and applications of the Steenrod algebra, Comment. Math. Helv. 32 (1958), 180-214 Zbl0083.17802MR96219
  2. J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. 72 (1960), 20-104 Zbl0096.17404MR141119
  3. M. A. Alghamdi, M. C. Crabb, J. R. Hubbuck, Representations of the homology of B V and the Steenrod algebra I, London Math. Soc. Lecture Note Ser. 176 (1992), 217-234 Zbl0752.55012MR1232208
  4. M. G. Barratt, S. Priddy, On the homology of non-connected monoids and their associated groups, Comment. Math. Helv. 47 (1972), 1-14 Zbl0262.55015MR314940
  5. J. M. Boardman, Modular representations on the homology of powers of real projective spaces, Contemp. Math. 146 (1993), 49-70 Zbl0789.55015MR1224907
  6. W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I : The user language, J. Symbolic Comput. 24 (1997), 235-265 Zbl0898.68039MR1484478
  7. A. K. Bousfield, E. B. Curtis, D. M. Kan, D. G. Quillen, D. L. Rector, J. W. Schlesinger, The mod p lower central series and the Adams spectral sequence, Topology 5 (1966), 331-342 Zbl0158.20502MR199862
  8. R. Bruner, L. M. Hà, N. H. V. Hung, On behavior of the algebraic transfer, à paraître dans Trans. Amer. Math. Soc. Zbl1055.55015MR2095619
  9. M. C. Crabb, J. R. Hubbuck, Representations of the homology of B V and the Steenrod algebra II, Progr. Math. 136 (1996), 143-154 Zbl0858.55014MR1397726
  10. M. D. Crossley, 𝒜 ( p ) -annihilated elements in H * ( P × P ) , Math. Proc. Cambridge Philos. Soc. 120 (1996), 441-453 Zbl0868.55014MR1388199
  11. M. D. Crossley, 𝒜 ( p ) generators for H * V and Singer’s homological transfer, Math. Z. 230 (1999), 401-411 Zbl0929.55014
  12. M. D. Crossley, Monomial bases for H * ( P × P ) over 𝒜 ( p ) , Trans. Amer. Math. Soc. 351 (1999), 171-192 Zbl0910.55006MR1451596
  13. E. B. Curtis, The Dyer–Lashof algebra and the Λ -algebra, Illinois J. Math. 19 (1975), 231-246 Zbl0311.55007MR377885
  14. E. Dyer, R. K. Lashof, Homology of iterated loopspaces, Amer. J. Math. 84 (1962), 35-88 Zbl0119.18206MR141112
  15. S. Eilenberg, S. MacLane, On the groups H ( π , n ) , I, Ann. of Math. 58 (1953), 55-106 Zbl0050.39304MR56295
  16. P. Goerss, Unstable projectives and stable Ext : with applications, Proc. London Math. Soc. 53 (1986), 539-561 Zbl0638.55018MR868458
  17. L. M. Hà, Sub-Hopf algebras of the Steenrod algebra and the Singer transfer, in preparation Zbl1154.55012
  18. N. H. V. Hung, The cohomology of the Steenrod algebra and representations of the general linear groups, à paraître dans Trans. Amer. Math. Soc. Zbl1074.55006MR2159700
  19. N. H. V. Hung, Spherical classes and the algebraic transfer, Trans. Amer. Math. Soc. 349 (1997), 3893-3910 Zbl0902.55004MR1433119
  20. N. H. V. Hung, T. N. Nam, The hit problem for the Dickson algebra, Trans. Amer. Math. Soc. 353 (2001), 5029-5040 Zbl0979.55011MR1852092
  21. M. Kameko, Generators of the cohomology of B V 4 , in preparation 
  22. M. Kameko, Products of projective spaces as Steenrod modules, (1990) 
  23. J. Lannes, S. Zarati, Foncteurs dérivés de la déstabilisation, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 573-576 Zbl0534.55008MR705164
  24. J. Lannes, S. Zarati, Invariants de Hopf d’ordre supérieur et suite spectrale d’Adams, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 695-698 Zbl0534.55009
  25. J. Lannes, S. Zarati, Sur les foncteurs dérivés de la déstabilisation, Math. Z. 194 (1987), 25-59 Zbl0627.55014MR871217
  26. W. H. Lin, Some differentials in the Adams spectral sequence for spheres, preprint 
  27. A. Liulivicius, The factorization of cyclic reduced powers by secondary operations, 42 (1962), Mem. Amer. Math. Soc. Zbl0131.38101
  28. S. Mac Lane, Homology, (1995), Springer–Verlag, Berlin Zbl0818.18001MR1344215
  29. I. Madsen, On the action of the Dyer–Lashof algebra in H * ( G ) , Pacific J. Math. 60 (1975), 235-275 Zbl0313.55018MR388392
  30. M. Mahowald, M. Tangora, An infinite subalgebra of E x t 𝒜 ( 2 , 2 ) , Trans. Amer. Math. Soc. 132 (1968), 263-274 Zbl0177.51401MR222887
  31. B. M. Mann, E. Y. Miller, H. R. Miller, S 1 -equivariant function spaces and characteristic classes, Trans. Amer. Math. Soc. 295 (1986), 233-256 Zbl0597.55010MR831198
  32. H. Margolis, S. Priddy, M. Tangora, Another systematic phenomenon in the cohomology of the Steenrod algebra, Topology 10 (1970), 43-46 Zbl0223.55030MR300272
  33. H. R. Margolis, Spectra and the Steenrod algebra, 29 (1983), North–Holland Mathematical Library Zbl0552.55002MR738973
  34. J. P. May, The cohomology of restricted Lie algebras and Hopf algebras, applications to the Steenrod algebra, Ph.D. Thesis, Princeton University (1964) MR185595
  35. J. Milnor, The Steenrod algebra and its dual, Ann. of Math. 67 (1958), 150-171 Zbl0080.38003MR99653
  36. N. Minami, The Adams spectral sequence and the triple transfer, Amer. J. Math. 117 (1995), 965-985 Zbl0851.55022MR1342837
  37. N. Minami, On the Kervaire invariant problem, Contemp. Math., Amer. Math. Soc., Providence, RI 220 (1998), 229-253 Zbl0915.55006MR1642897
  38. N. Minami, The iterated transfer analogue of the new doomsday conjecture, Trans. Amer. Math. Soc. 351 (1999), 2325-2351 Zbl0932.55012MR1443884
  39. S. Mitchell, Splitting B ( / p ) n and B T n via modular representation theory, Math. Z. 189 (1985), 1-9 Zbl0547.55017MR776532
  40. H. Mùi, Modular invariant theory and cohomology algebras of symmetric groups, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22 (1975), 319-369 Zbl0335.18010MR422451
  41. T. N. Nam, 𝒜 -générateurs génériques pour l’algèbre polynomiale, à paraître dans Zbl1060.55006
  42. T. N. Nam, Système générateur minimal de 𝔽 2 [ x , y , z ] comme module sur l’algèbre de Steenrod, (1999), Université des Sciences à Hanoï 
  43. S. P. Novikov, On the cohomology of the Steenrod algebra (Russian), Dokl. Akad. Nauk SSSR 128 (1959), 893-895 Zbl0127.38804MR111022
  44. J. H. Palmieri, Quillen stratification for the Steenrod algebra, Ann. of Math. 149 (1999), 421-449 Zbl0932.55021MR1689334
  45. F. P. Peterson, Generators of H * ( P P ) as a module over the Steenrod algebra, (1987), Abstracts Amer. Math. Soc., 833–55–89 
  46. F. P. Peterson, 𝒜 -generators for certain polynomial algebras, Math. Proc. Cambridge Philos. Soc. 105 (1989), 311-312 Zbl0692.55012MR974987
  47. D. Quillen, On the completion of a simplicial monoid, preprint Zbl0148.43105
  48. L. Schwartz, Unstable modules over the Steenrod algebra and Sullivan’s fixed point set conjecture, (1994), Chicago Lectures in Math. Zbl0871.55001
  49. W. M. Singer, On finite linear groups and the homology of the Steenrod algebra, preprint (1980) 
  50. W. M. Singer, Invariant theory and the lambda algebra, Trans. Amer. Math. Soc. 280 (1983), 673-693 Zbl0533.55013MR716844
  51. W. M. Singer, The transfer in homological algebra, Math. Z. 202 (1989), 493-523 Zbl0687.55014MR1022818
  52. N. E. Steenrod, D. B. A. Epstein, Cohomology operations, 50 (1962), Princeton University Press Zbl0102.38104MR145525
  53. M. C. Tangora, On the cohomology of the Steenrod algebra, Math. Z. 116 (1970), 18-64 Zbl0198.28202MR266205
  54. T. T. Trí, The irreducible modular representations of parabolic subgroups of general linear groups, Comm. Algebra 26 (1998), 41-47 Zbl0894.20011MR1600709
  55. J. S. P. Wang, On the cohomology of the mod 2 Steenrod algebra and the nonexistence of elements of Hopf invariant one, Illinois J. Math. 11 (1967), 480-490 Zbl0161.20204MR214065
  56. C. Wilkerson, Classifying spaces, Steenrod operations and algebraic closure, Topology 16 (1977), 227-237 Zbl0404.55019MR442932
  57. R. M. W. Wood, Steenrod squares of polynomials, London Math. Soc. Lecture Note Ser. 139 (1989), 173-177 Zbl0696.55028MR1055877
  58. R. M. W. Wood, Steenrod squares of polynomials and the Peterson conjecture, Math. Proc. Cambridge Philos. Soc. 105 (1989), 307-309 Zbl0692.55011MR974986
  59. R. M. W. Wood, Problems in the Steenrod algebra, Bull. London Math. Soc. 146 (1998), 449-517 Zbl0924.55015MR1643834
  60. N. Yoneda, Notes on products in Ext, Proc. Amer. Math. Soc. 9 (1958), 873-875 Zbl0101.27204MR175957
  61. A. Zachariou, A subalgebra of E x t 𝒜 * * ( 2 , 2 ) , Bull. London Math. Soc. 73 (1967), 647-648 Zbl0246.18014MR214060
  62. A. Zachariou, A polynomial subalgebra of the cohomology of the Steenrod algebra, Publ. Res. Inst. Math. Sci. 9 ((1973/74), 157-164 Zbl0279.55016MR341489

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.