Convergence in Capacity
Yang Xing[1]
- [1] Swedish University of Agricultural Sciences Centre of Biostochastics 901 83 Umeå(Sweden)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 5, page 1839-1861
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topXing, Yang. "Convergence in Capacity." Annales de l’institut Fourier 58.5 (2008): 1839-1861. <http://eudml.org/doc/10364>.
@article{Xing2008,
abstract = {We study the relationship between convergence in capacities of plurisubharmonic functions and the convergence of the corresponding complex Monge-Ampère measures. We find one type of convergence of complex Monge-Ampère measures which is essentially equivalent to convergence in the capacity $C_n$ of functions. We also prove that weak convergence of complex Monge-Ampère measures is equivalent to convergence in the capacity $C_\{n-1\}$ of functions in some case. As applications we give certain stability theorems of solutions of Monge-Ampère equations.},
affiliation = {Swedish University of Agricultural Sciences Centre of Biostochastics 901 83 Umeå(Sweden)},
author = {Xing, Yang},
journal = {Annales de l’institut Fourier},
keywords = {the complex Monge-Ampère operator; plurisubharmonic function; capacity; plurisubharmonic functions; Monge-Ampère operator; capacities},
language = {eng},
number = {5},
pages = {1839-1861},
publisher = {Association des Annales de l’institut Fourier},
title = {Convergence in Capacity},
url = {http://eudml.org/doc/10364},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Xing, Yang
TI - Convergence in Capacity
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 5
SP - 1839
EP - 1861
AB - We study the relationship between convergence in capacities of plurisubharmonic functions and the convergence of the corresponding complex Monge-Ampère measures. We find one type of convergence of complex Monge-Ampère measures which is essentially equivalent to convergence in the capacity $C_n$ of functions. We also prove that weak convergence of complex Monge-Ampère measures is equivalent to convergence in the capacity $C_{n-1}$ of functions in some case. As applications we give certain stability theorems of solutions of Monge-Ampère equations.
LA - eng
KW - the complex Monge-Ampère operator; plurisubharmonic function; capacity; plurisubharmonic functions; Monge-Ampère operator; capacities
UR - http://eudml.org/doc/10364
ER -
References
top- P. Åhag, The complex Monge-Ampère operator on bounded hyperconvex domains, (2002)
- E. Bedford, B. A. Taylor, The Dirichlet problem for the complex Monge-Ampère operator, Invent. Math. 37 (1976), 1-44 Zbl0315.31007MR445006
- E. Bedford, B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-40 Zbl0547.32012MR674165
- E. Bedford, B. A. Taylor, Fine topology, Šilov boundary and , J. Funct. Anal. 72 (1987), 225-251 Zbl0677.31005MR886812
- U. Cegrell, Discontinuité de l’opérateur de Monge-Ampère complexe, C. R. Acad. Sci. Paris Ser. I Math. 296 (1983), 869-871 Zbl0541.31008
- U. Cegrell, Capacities in complex analysis, (1988) Zbl0655.32001MR964469
- U. Cegrell, Pluricomplex energy, Acta Math. 180 (1998), 187-217 Zbl0926.32042MR1638768
- U. Cegrell, Convergence in capacity, Isaac Newton Institute for Math. Science P. (2001) Zbl1251.32028
- U. Cegrell, The general definition of the complex Monge-Ampère operator, Ann. Inst. Fourier 54 (2004), 159-179 Zbl1065.32020MR2069125
- U. Cegrell, S. Kolodziej, The equation of complex Monge-Ampère type and stability of solutions, Math. Ann. 334 (2006), 713-729 Zbl1103.32019MR2209253
- C. O. Kiselman, Plurisubharmonic functions and potential theory in several complex variables, Development of mathematics 1950-2000 Zbl0962.31001MR1796855
- S. Kolodziej, The range of the complex Monge-Ampère operator, II, Indiana Univ. Math. J. 44 (1995), 765-782 Zbl0849.31009MR1375348
- S. Kolodziej, The complex Monge-Ampère equation and pluripotential theory, Memoirs of the Amer. Math. Soc. 178 (2005) Zbl1084.32027MR2172891
- P. Lelong, Discontinuité et annulation de l’opérateur de Monge-Ampère complexe, Lecture Notes in Math. 1028 (1983), 219-224 Zbl0592.32014
- A. Rashkovskii, Singularities of plurisubharmonic functions and positive closed currents, Mid Sweden University, Research Reports (2000) Zbl0972.32024
- Y. Xing, Weak Convergence of Currents Zbl1165.32016
- Y. Xing, Continuity of the complex Monge-Ampère operator, Proc. of Amer. Math. Soc. 124 (1996), 457-467 Zbl0849.31010MR1322940
- Y. Xing, Complex Monge-Ampère measures of plurisubharmonic functions with bounded values near the boundary, Canad. J. Math. 52 (2000), 1085-1100 Zbl0976.32019MR1782339
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.