The general definition of the complex Monge-Ampère operator
- [1] Umeå University, Department of Mathematics, 901 87 Umeå (Suède)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 1, page 159-179
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCegrell, Urban. "The general definition of the complex Monge-Ampère operator." Annales de l’institut Fourier 54.1 (2004): 159-179. <http://eudml.org/doc/116103>.
@article{Cegrell2004,
abstract = {We define and study the domain of definition for the complex Monge-Ampère operator. This
domain is the most general if we require the operator to be continuous under decreasing
limits. The domain is given in terms of approximation by certain " test"-plurisubharmonic
functions. We prove estimates, study of decomposition theorem for positive measures and
solve a Dirichlet problem.},
affiliation = {Umeå University, Department of Mathematics, 901 87 Umeå (Suède)},
author = {Cegrell, Urban},
journal = {Annales de l’institut Fourier},
keywords = {complex Monge-Ampère operator; plurisubharmonic function; Monge-Ampère operator; test functions; weak*-convergence; Dirichlet problem; pluripolar set},
language = {eng},
number = {1},
pages = {159-179},
publisher = {Association des Annales de l'Institut Fourier},
title = {The general definition of the complex Monge-Ampère operator},
url = {http://eudml.org/doc/116103},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Cegrell, Urban
TI - The general definition of the complex Monge-Ampère operator
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 1
SP - 159
EP - 179
AB - We define and study the domain of definition for the complex Monge-Ampère operator. This
domain is the most general if we require the operator to be continuous under decreasing
limits. The domain is given in terms of approximation by certain " test"-plurisubharmonic
functions. We prove estimates, study of decomposition theorem for positive measures and
solve a Dirichlet problem.
LA - eng
KW - complex Monge-Ampère operator; plurisubharmonic function; Monge-Ampère operator; test functions; weak*-convergence; Dirichlet problem; pluripolar set
UR - http://eudml.org/doc/116103
ER -
References
top- E. Bedford, Survey of pluripotential theory. Several complex variables, Proceedings of the Mittag-Leffler Inst. (1987-88) 38 (1994), 48-95, Princeton University Press Zbl0786.31001MR1207855
- E. Bedford, B.A. Taylor, The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math 37 (1976), 1-44 Zbl0315.31007MR445006
- E. Bedford, B.A. Taylor, A new capacity for plurisubharmonic functions, Acta Math 149 (1982), 1-40 Zbl0547.32012MR674165
- Z. Blocki, Estimates for the complex Monge-Ampère operator, Bull. Pol. Acad. Sci. Math 41 (1993), 151-157 Zbl0795.32003MR1414762
- Z. Blocki, The complex Monge-Ampère operator in hyperconvex domains, Annali della Scuola Normale Superiore di Pisa 23 (1996), 721-747 Zbl0878.31003MR1469572
- M. Carlehed, Potentials in pluripotential theory, Ann. de la Fac. Sci. de Toulouse (6) 8 (1999), 439-469 Zbl0961.31005MR1751172
- U. Cegrell, Pluricomplex energy, Acta Mathematica 180 (1998), 187-217 Zbl0926.32042MR1638768
- U. Cegrell, Explicit calculation of a Monge-Ampère measure, Actes des rencontres d'analyse complexe (Université de Poitiers, 25-28 mars 1999) (2000), 39-42, Poitiers: Atlantique Zbl1036.32023MR1944194
- U. Cegrell, Convergence in capacity, (2001)
- U. Cegrell, Exhaustion functions for hyperconvex domains, (2001)
- U. Cegrell, S. Kolodziej, The Dirichlet problem for the complex Monge-Ampère operator: Perron classes and rotation invariant measures, Michigan. Math. J 41 (1994), 563-569 Zbl0820.31005MR1297709
- D. Coman, Integration by parts for currents and applications to the relative capacity and Lelong numbers, Mathematica 39(62) (1997), 45-57 Zbl0914.32003MR1622653
- J.-P. Demailly, Mesures de Monge-Ampère et mesures pluriharmoniques, Math. Z 194 (1987), 519-564 Zbl0595.32006MR881709
- N. Kerzman, J.-P. Rosay, Fonctions plurisousharmoniques d'exhaustion bornées et domaines taut, Math. Ann 257 (1981), 171-184 Zbl0451.32012MR634460
- S. Kolodziej, The complex Monge-Ampère equation, Acta Mathematica 180 (1998), 69-117 Zbl0913.35043MR1618325
- N. Sibony, Quelques problèmes de prolongement de courants en analyse complexe, Duke Math. J 52 (1985), 157-197 Zbl0578.32023MR791297
- J. Siciak, Extremal plurisubharmonic functions and capacities in , Sophia Kokyuroko in Mathematics (1982) Zbl0579.32025
- J.B. Walsh, Continuity of envelopes of plurisubharmonic functions, J. Math. Mech 18 (1968), 143-148 Zbl0159.16002MR227465
- F. Wikström, Jensen measures and boundary values of plurisubharmonic functions, Ark. Mat 39 (2001), 181-200 Zbl1021.32014MR1821089
- Y. Xing, Complex Monge-Ampère equations with a countable number of singular points, Indiana Univ. Math. J 48 (1999), 749-765 Zbl0934.32027MR1722815
- A. Zeriahi, Pluricomplex Green functions and the Dirichlet problem for the Complex Monge-Ampère operator, Michigan Math. J 44 (1997), 579-596 Zbl0899.31007MR1481120
Citations in EuDML Documents
top- Yang Xing, Convergence in Capacity
- Pham Hoang Hiep, Hölder continuity of solutions to the Monge-Ampère equations on compact Kähler manifolds
- U. Cegrell, S. Kołodziej, A. Zeriahi, Maximal subextensions of plurisubharmonic functions
- Zbigniew Blocki, Weak solutions to the complex Hessian equation
- Ahmed Zeriahi, A viscosity approach to degenerate complex Monge-Ampère equations
- Dongrui Wan, Estimates for -Hessian operator and some applications
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.