The general definition of the complex Monge-Ampère operator

Urban Cegrell[1]

  • [1] Umeå University, Department of Mathematics, 901 87 Umeå (Suède)

Annales de l’institut Fourier (2004)

  • Volume: 54, Issue: 1, page 159-179
  • ISSN: 0373-0956

Abstract

top
We define and study the domain of definition for the complex Monge-Ampère operator. This domain is the most general if we require the operator to be continuous under decreasing limits. The domain is given in terms of approximation by certain " test"-plurisubharmonic functions. We prove estimates, study of decomposition theorem for positive measures and solve a Dirichlet problem.

How to cite

top

Cegrell, Urban. "The general definition of the complex Monge-Ampère operator." Annales de l’institut Fourier 54.1 (2004): 159-179. <http://eudml.org/doc/116103>.

@article{Cegrell2004,
abstract = {We define and study the domain of definition for the complex Monge-Ampère operator. This domain is the most general if we require the operator to be continuous under decreasing limits. The domain is given in terms of approximation by certain " test"-plurisubharmonic functions. We prove estimates, study of decomposition theorem for positive measures and solve a Dirichlet problem.},
affiliation = {Umeå University, Department of Mathematics, 901 87 Umeå (Suède)},
author = {Cegrell, Urban},
journal = {Annales de l’institut Fourier},
keywords = {complex Monge-Ampère operator; plurisubharmonic function; Monge-Ampère operator; test functions; weak*-convergence; Dirichlet problem; pluripolar set},
language = {eng},
number = {1},
pages = {159-179},
publisher = {Association des Annales de l'Institut Fourier},
title = {The general definition of the complex Monge-Ampère operator},
url = {http://eudml.org/doc/116103},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Cegrell, Urban
TI - The general definition of the complex Monge-Ampère operator
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 1
SP - 159
EP - 179
AB - We define and study the domain of definition for the complex Monge-Ampère operator. This domain is the most general if we require the operator to be continuous under decreasing limits. The domain is given in terms of approximation by certain " test"-plurisubharmonic functions. We prove estimates, study of decomposition theorem for positive measures and solve a Dirichlet problem.
LA - eng
KW - complex Monge-Ampère operator; plurisubharmonic function; Monge-Ampère operator; test functions; weak*-convergence; Dirichlet problem; pluripolar set
UR - http://eudml.org/doc/116103
ER -

References

top
  1. E. Bedford, Survey of pluripotential theory. Several complex variables, Proceedings of the Mittag-Leffler Inst. (1987-88) 38 (1994), 48-95, Princeton University Press Zbl0786.31001MR1207855
  2. E. Bedford, B.A. Taylor, The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math 37 (1976), 1-44 Zbl0315.31007MR445006
  3. E. Bedford, B.A. Taylor, A new capacity for plurisubharmonic functions, Acta Math 149 (1982), 1-40 Zbl0547.32012MR674165
  4. Z. Blocki, Estimates for the complex Monge-Ampère operator, Bull. Pol. Acad. Sci. Math 41 (1993), 151-157 Zbl0795.32003MR1414762
  5. Z. Blocki, The complex Monge-Ampère operator in hyperconvex domains, Annali della Scuola Normale Superiore di Pisa 23 (1996), 721-747 Zbl0878.31003MR1469572
  6. M. Carlehed, Potentials in pluripotential theory, Ann. de la Fac. Sci. de Toulouse (6) 8 (1999), 439-469 Zbl0961.31005MR1751172
  7. U. Cegrell, Pluricomplex energy, Acta Mathematica 180 (1998), 187-217 Zbl0926.32042MR1638768
  8. U. Cegrell, Explicit calculation of a Monge-Ampère measure, Actes des rencontres d'analyse complexe (Université de Poitiers, 25-28 mars 1999) (2000), 39-42, Poitiers: Atlantique Zbl1036.32023MR1944194
  9. U. Cegrell, Convergence in capacity, (2001) 
  10. U. Cegrell, Exhaustion functions for hyperconvex domains, (2001) 
  11. U. Cegrell, S. Kolodziej, The Dirichlet problem for the complex Monge-Ampère operator: Perron classes and rotation invariant measures, Michigan. Math. J 41 (1994), 563-569 Zbl0820.31005MR1297709
  12. D. Coman, Integration by parts for currents and applications to the relative capacity and Lelong numbers, Mathematica 39(62) (1997), 45-57 Zbl0914.32003MR1622653
  13. J.-P. Demailly, Mesures de Monge-Ampère et mesures pluriharmoniques, Math. Z 194 (1987), 519-564 Zbl0595.32006MR881709
  14. N. Kerzman, J.-P. Rosay, Fonctions plurisousharmoniques d'exhaustion bornées et domaines taut, Math. Ann 257 (1981), 171-184 Zbl0451.32012MR634460
  15. S. Kolodziej, The complex Monge-Ampère equation, Acta Mathematica 180 (1998), 69-117 Zbl0913.35043MR1618325
  16. N. Sibony, Quelques problèmes de prolongement de courants en analyse complexe, Duke Math. J 52 (1985), 157-197 Zbl0578.32023MR791297
  17. J. Siciak, Extremal plurisubharmonic functions and capacities in n , Sophia Kokyuroko in Mathematics (1982) Zbl0579.32025
  18. J.B. Walsh, Continuity of envelopes of plurisubharmonic functions, J. Math. Mech 18 (1968), 143-148 Zbl0159.16002MR227465
  19. F. Wikström, Jensen measures and boundary values of plurisubharmonic functions, Ark. Mat 39 (2001), 181-200 Zbl1021.32014MR1821089
  20. Y. Xing, Complex Monge-Ampère equations with a countable number of singular points, Indiana Univ. Math. J 48 (1999), 749-765 Zbl0934.32027MR1722815
  21. A. Zeriahi, Pluricomplex Green functions and the Dirichlet problem for the Complex Monge-Ampère operator, Michigan Math. J 44 (1997), 579-596 Zbl0899.31007MR1481120

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.