On the cohomology of vector fields on parallelizable manifolds
Yuly Billig[1]; Karl-Hermann Neeb[2]
- [1] Carleton University School of Mathematics and Statistics 1125 Colonel By Drive Ottawa, Ontario, K1S 5B6 (Canada)
- [2] Technische Universität Darmstadt Schlossgartenstrasse 7 64289 Darmstadt (Deutschland)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 6, page 1937-1982
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBillig, Yuly, and Neeb, Karl-Hermann. "On the cohomology of vector fields on parallelizable manifolds." Annales de l’institut Fourier 58.6 (2008): 1937-1982. <http://eudml.org/doc/10366>.
@article{Billig2008,
abstract = {In the present paper we determine for each parallelizable smooth compact manifold $M$ the second cohomology spaces of the Lie algebra $\{\mathcal\{V\}\}_M$ of smooth vector fields on $M$ with values in the module $\overline\{\Omega \}\,^p_M = \Omega ^p_M/d\Omega ^\{p-1\}_M$. The case of $p=1$ is of particular interest since the gauge algebra of functions on $M$ with values in a finite-dimensional simple Lie algebra has the universal central extension with center $\overline\{\Omega \}^1_M$, generalizing affine Kac-Moody algebras. The second cohomology $H^2(\{\mathcal\{V\}\}_M, \overline\{\Omega \}^1_M)$ classifies twists of the semidirect product of $\{\mathcal\{V\}\}_M$ with the universal central extension of a gauge Lie algebra.},
affiliation = {Carleton University School of Mathematics and Statistics 1125 Colonel By Drive Ottawa, Ontario, K1S 5B6 (Canada); Technische Universität Darmstadt Schlossgartenstrasse 7 64289 Darmstadt (Deutschland)},
author = {Billig, Yuly, Neeb, Karl-Hermann},
journal = {Annales de l’institut Fourier},
keywords = {Lie algebra of vector fields; Lie algebra cohomology; Gelfand-Fuks cohomology; extended affine Lie algebra; continuous cohomology; cohomology of vector fields with values in differential forms},
language = {eng},
number = {6},
pages = {1937-1982},
publisher = {Association des Annales de l’institut Fourier},
title = {On the cohomology of vector fields on parallelizable manifolds},
url = {http://eudml.org/doc/10366},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Billig, Yuly
AU - Neeb, Karl-Hermann
TI - On the cohomology of vector fields on parallelizable manifolds
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 6
SP - 1937
EP - 1982
AB - In the present paper we determine for each parallelizable smooth compact manifold $M$ the second cohomology spaces of the Lie algebra ${\mathcal{V}}_M$ of smooth vector fields on $M$ with values in the module $\overline{\Omega }\,^p_M = \Omega ^p_M/d\Omega ^{p-1}_M$. The case of $p=1$ is of particular interest since the gauge algebra of functions on $M$ with values in a finite-dimensional simple Lie algebra has the universal central extension with center $\overline{\Omega }^1_M$, generalizing affine Kac-Moody algebras. The second cohomology $H^2({\mathcal{V}}_M, \overline{\Omega }^1_M)$ classifies twists of the semidirect product of ${\mathcal{V}}_M$ with the universal central extension of a gauge Lie algebra.
LA - eng
KW - Lie algebra of vector fields; Lie algebra cohomology; Gelfand-Fuks cohomology; extended affine Lie algebra; continuous cohomology; cohomology of vector fields with values in differential forms
UR - http://eudml.org/doc/10366
ER -
References
top- R. Abraham, J. E. Marsden, T. Ratiu, Manifolds, Tensor Analysis, and Applications, (1983), Addison-Wesley Zbl0508.58001MR697563
- B. Allison, S. Berman, J. Faulkner, A. Pianzola, Realizations of graded-simple algebras as loop algebras Zbl1157.17009
- Y. A. Bahturin, A. A. Mikhalev, V. M. Petrogradsky, M. V. Zaicev, Infinite-dimensional Lie superalgebras, (1992), Walter de Gruyter & Co Zbl0762.17001MR1192546
- E. J. Beggs, The de Rham complex on infinite dimensional manifolds, Quart. J. Math. Oxford 38 (1987), 131-154 Zbl0636.58004MR891612
- G. Benkart, E. Neher, The centroid of extended affine and root graded Lie algebras, J. Pure Appl. Algebra 205 (2006), 117-145 Zbl1163.17306MR2193194
- S. Berman, Y. Billig, Irreducible representations for toroidal Lie algebras, J. Algebra 221 (1999), 188-231 Zbl0942.17016MR1722910
- I. N. Bernshtein, B. I. Rozenfel’d, Homogeneous spaces of infinitedimensional Lie algebras and characteristic classes of foliations, Russ. Math. Surveys 28 (1973), 107-142 Zbl0289.57011
- Y. Billig, A category of modules for the full toroidal Lie algebra, (2006), Int. Math. Res. Not. Zbl1201.17016MR2272091
- C. Chevalley, S. Eilenberg, Cohomology theory of Lie groups and Lie algebras, Transactions of the Amer. Math. Soc. 63 (1948), 85-124 Zbl0031.24803MR24908
- F. R. Cohen, L. R. Taylor, Computations of Gelfand-Fuks cohomology, the cohomology of function spaces, and the cohomology of configuration spaces, Geometric applications of homotopy theory I 657 (1978), 106-173, Springer Zbl0398.55004MR513543
- M. de Wilde, P. B. A. Lecomte, Cohomology of the Lie algebra of smooth vector fields of a manifold, associated to the Lie derivative of smooth forms, J. Math. Pures et Appl. 62 (1983), 197-214 Zbl0481.58032MR713396
- S. Eswara Rao, R. V. Moody, Vertex representations for -toroidal Lie algebras and a generalization of the Virasoro algebra, Comm. Math. Phys. 159 (1994), 239-264 Zbl0808.17018MR1256988
- B. L. Feigin, D. B. Fuchs, Cohomologies of Lie Groups and Lie Algebras, Lie Groups and Lie Algebras II 21 (2001), Springer-Verlag Zbl0931.17014
- M. Flato, A. Lichnerowicz, Cohomologie des représentations définies par la dérivation de Lie et à valeurs dans les formes, de l’algèbre de Lie des champs de vecteurs d’une variété différentiable. Premiers espaces de cohomologie. Applications, C. R. Acad. Sci. Paris, Sér. A-B 291 (1980), A331-A335 Zbl0462.58011
- D. B. Fuks, Cohomology of Infinite-Dimensional Lie Algebras, (1986), Consultants Bureau, New York, London Zbl0667.17005MR874337
- I. M. Gelfand, D. B. Fuks, Cohomology of the Lie algebra of formal vector fields, Izv. Akad. Nauk SSSR (1970), 322-337 Zbl0216.20302MR266195
- I. M. Gelfand, D. B. Fuks, Cohomology of the Lie algebra of vector fields with nontrivial coefficients, Func. Anal. and its Appl. 4 (1970), 181-192 Zbl0222.58001MR287589
- C. Godbillon, Cohomologies d’algèbres de Lie de champs de vecteurs formels, Séminaire Bourbaki (1972/1973), Exp. No. 421 383 (1974), 69-87 Zbl0296.17010
- A. Haefliger, Sur la cohomologie de l’algèbre de Lie des champs de vecteurs, Ann. Sci. Ec. Norm. Sup., 4e série 9 (1976), 503-532 Zbl0342.57014
- G. Hochschild, J.-P. Serre, Cohomology of Lie algebras, Annals of Math. 57 (1953), 591-603 Zbl0053.01402MR54581
- C. Kassel, Kähler differentials and coverings of complex simple Lie algebras extended over a commutative ring, J. Pure Applied Algebra 34 (1984), 265-275 Zbl0549.17009MR772062
- J.-L. Koszul, Homologie des complexes de formes différentielles d’ordre supérieur, Collection of articles dedicated to Henri Cartan on the occasion of his 70th birthday, I 7 (1974), 139-153, Ann. Sci. École Norm. Sup. (4) Zbl0316.58003
- T. A. Larsson, Lowest-energy representations of non-centrally extended diffeomorphism algebras, Comm. Math. Phys. 201 (1999), 461-470 Zbl0936.17025MR1682285
- P. Maier, Central extensions of topological current algebras, Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups 55 (2002), 61-76, Banach Center Publications, Warszawa Zbl1045.17008MR1911980
- K.-H. Neeb, Abelian extensions of infinite-dimensional Lie groups, Travaux mathématiques 15 (2004), 69-194 Zbl1079.22018MR2143422
- K.-H. Neeb, Lie algebra extensions and higher order cocycles, J. Geom. Sym. Phys. 5 (2006), 48-74 Zbl1105.53064MR2269881
- K.-H. Neeb, Non-abelian extensions of topological Lie algebras, Communications in Algebra 34 (2006), 991-1041 Zbl1158.17308MR2208114
- E. Neher, Extended affine Lie algebras, C. R. Math. Acad. Sci. Soc. R. Can. 26 (2004), 90-96 Zbl1072.17012MR2083842
- A. Pressley, G. Segal, Loop Groups, (1986), Oxford University Press, Oxford Zbl0618.22011MR900587
- B. I. Rosenfeld, Cohomology of certain infinite-dimensional Lie algebras, Funct. Anal. Appl. 13 (1971), 340-342 Zbl0248.57030
- T. Tsujishita, On the continuous cohomology of the Lie algebra of vector fields, Proc. Jap. Math. Soc. 53:A (1977), 134-138 Zbl0476.58032MR458517
- T. Tsujishita, Continuous cohomology of the Lie algebra of vector fields, Memoirs of the Amer. Math. Soc. 253 (1981) Zbl0482.58036MR634471
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.