On the cohomology of vector fields on parallelizable manifolds

Yuly Billig[1]; Karl-Hermann Neeb[2]

  • [1] Carleton University School of Mathematics and Statistics 1125 Colonel By Drive Ottawa, Ontario, K1S 5B6 (Canada)
  • [2] Technische Universität Darmstadt Schlossgartenstrasse 7 64289 Darmstadt (Deutschland)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 6, page 1937-1982
  • ISSN: 0373-0956

Abstract

top
In the present paper we determine for each parallelizable smooth compact manifold M the second cohomology spaces of the Lie algebra 𝒱 M of smooth vector fields on M with values in the module Ω ¯ M p = Ω M p / d Ω M p - 1 . The case of p = 1 is of particular interest since the gauge algebra of functions on M with values in a finite-dimensional simple Lie algebra has the universal central extension with center Ω ¯ M 1 , generalizing affine Kac-Moody algebras. The second cohomology H 2 ( 𝒱 M , Ω ¯ M 1 ) classifies twists of the semidirect product of 𝒱 M with the universal central extension of a gauge Lie algebra.

How to cite

top

Billig, Yuly, and Neeb, Karl-Hermann. "On the cohomology of vector fields on parallelizable manifolds." Annales de l’institut Fourier 58.6 (2008): 1937-1982. <http://eudml.org/doc/10366>.

@article{Billig2008,
abstract = {In the present paper we determine for each parallelizable smooth compact manifold $M$ the second cohomology spaces of the Lie algebra $\{\mathcal\{V\}\}_M$ of smooth vector fields on $M$ with values in the module $\overline\{\Omega \}\,^p_M = \Omega ^p_M/d\Omega ^\{p-1\}_M$. The case of $p=1$ is of particular interest since the gauge algebra of functions on $M$ with values in a finite-dimensional simple Lie algebra has the universal central extension with center $\overline\{\Omega \}^1_M$, generalizing affine Kac-Moody algebras. The second cohomology $H^2(\{\mathcal\{V\}\}_M, \overline\{\Omega \}^1_M)$ classifies twists of the semidirect product of $\{\mathcal\{V\}\}_M$ with the universal central extension of a gauge Lie algebra.},
affiliation = {Carleton University School of Mathematics and Statistics 1125 Colonel By Drive Ottawa, Ontario, K1S 5B6 (Canada); Technische Universität Darmstadt Schlossgartenstrasse 7 64289 Darmstadt (Deutschland)},
author = {Billig, Yuly, Neeb, Karl-Hermann},
journal = {Annales de l’institut Fourier},
keywords = {Lie algebra of vector fields; Lie algebra cohomology; Gelfand-Fuks cohomology; extended affine Lie algebra; continuous cohomology; cohomology of vector fields with values in differential forms},
language = {eng},
number = {6},
pages = {1937-1982},
publisher = {Association des Annales de l’institut Fourier},
title = {On the cohomology of vector fields on parallelizable manifolds},
url = {http://eudml.org/doc/10366},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Billig, Yuly
AU - Neeb, Karl-Hermann
TI - On the cohomology of vector fields on parallelizable manifolds
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 6
SP - 1937
EP - 1982
AB - In the present paper we determine for each parallelizable smooth compact manifold $M$ the second cohomology spaces of the Lie algebra ${\mathcal{V}}_M$ of smooth vector fields on $M$ with values in the module $\overline{\Omega }\,^p_M = \Omega ^p_M/d\Omega ^{p-1}_M$. The case of $p=1$ is of particular interest since the gauge algebra of functions on $M$ with values in a finite-dimensional simple Lie algebra has the universal central extension with center $\overline{\Omega }^1_M$, generalizing affine Kac-Moody algebras. The second cohomology $H^2({\mathcal{V}}_M, \overline{\Omega }^1_M)$ classifies twists of the semidirect product of ${\mathcal{V}}_M$ with the universal central extension of a gauge Lie algebra.
LA - eng
KW - Lie algebra of vector fields; Lie algebra cohomology; Gelfand-Fuks cohomology; extended affine Lie algebra; continuous cohomology; cohomology of vector fields with values in differential forms
UR - http://eudml.org/doc/10366
ER -

References

top
  1. R. Abraham, J. E. Marsden, T. Ratiu, Manifolds, Tensor Analysis, and Applications, (1983), Addison-Wesley Zbl0508.58001MR697563
  2. B. Allison, S. Berman, J. Faulkner, A. Pianzola, Realizations of graded-simple algebras as loop algebras Zbl1157.17009
  3. Y. A. Bahturin, A. A. Mikhalev, V. M. Petrogradsky, M. V. Zaicev, Infinite-dimensional Lie superalgebras, (1992), Walter de Gruyter & Co Zbl0762.17001MR1192546
  4. E. J. Beggs, The de Rham complex on infinite dimensional manifolds, Quart. J. Math. Oxford 38 (1987), 131-154 Zbl0636.58004MR891612
  5. G. Benkart, E. Neher, The centroid of extended affine and root graded Lie algebras, J. Pure Appl. Algebra 205 (2006), 117-145 Zbl1163.17306MR2193194
  6. S. Berman, Y. Billig, Irreducible representations for toroidal Lie algebras, J. Algebra 221 (1999), 188-231 Zbl0942.17016MR1722910
  7. I. N. Bernshtein, B. I. Rozenfel’d, Homogeneous spaces of infinitedimensional Lie algebras and characteristic classes of foliations, Russ. Math. Surveys 28 (1973), 107-142 Zbl0289.57011
  8. Y. Billig, A category of modules for the full toroidal Lie algebra, (2006), Int. Math. Res. Not. Zbl1201.17016MR2272091
  9. C. Chevalley, S. Eilenberg, Cohomology theory of Lie groups and Lie algebras, Transactions of the Amer. Math. Soc. 63 (1948), 85-124 Zbl0031.24803MR24908
  10. F. R. Cohen, L. R. Taylor, Computations of Gelfand-Fuks cohomology, the cohomology of function spaces, and the cohomology of configuration spaces, Geometric applications of homotopy theory I 657 (1978), 106-173, Springer Zbl0398.55004MR513543
  11. M. de Wilde, P. B. A. Lecomte, Cohomology of the Lie algebra of smooth vector fields of a manifold, associated to the Lie derivative of smooth forms, J. Math. Pures et Appl. 62 (1983), 197-214 Zbl0481.58032MR713396
  12. S. Eswara Rao, R. V. Moody, Vertex representations for n -toroidal Lie algebras and a generalization of the Virasoro algebra, Comm. Math. Phys. 159 (1994), 239-264 Zbl0808.17018MR1256988
  13. B. L. Feigin, D. B. Fuchs, Cohomologies of Lie Groups and Lie Algebras, Lie Groups and Lie Algebras II 21 (2001), Springer-Verlag Zbl0931.17014
  14. M. Flato, A. Lichnerowicz, Cohomologie des représentations définies par la dérivation de Lie et à valeurs dans les formes, de l’algèbre de Lie des champs de vecteurs d’une variété différentiable. Premiers espaces de cohomologie. Applications, C. R. Acad. Sci. Paris, Sér. A-B 291 (1980), A331-A335 Zbl0462.58011
  15. D. B. Fuks, Cohomology of Infinite-Dimensional Lie Algebras, (1986), Consultants Bureau, New York, London Zbl0667.17005MR874337
  16. I. M. Gelfand, D. B. Fuks, Cohomology of the Lie algebra of formal vector fields, Izv. Akad. Nauk SSSR (1970), 322-337 Zbl0216.20302MR266195
  17. I. M. Gelfand, D. B. Fuks, Cohomology of the Lie algebra of vector fields with nontrivial coefficients, Func. Anal. and its Appl. 4 (1970), 181-192 Zbl0222.58001MR287589
  18. C. Godbillon, Cohomologies d’algèbres de Lie de champs de vecteurs formels, Séminaire Bourbaki (1972/1973), Exp. No. 421 383 (1974), 69-87 Zbl0296.17010
  19. A. Haefliger, Sur la cohomologie de l’algèbre de Lie des champs de vecteurs, Ann. Sci. Ec. Norm. Sup., 4e série 9 (1976), 503-532 Zbl0342.57014
  20. G. Hochschild, J.-P. Serre, Cohomology of Lie algebras, Annals of Math. 57 (1953), 591-603 Zbl0053.01402MR54581
  21. C. Kassel, Kähler differentials and coverings of complex simple Lie algebras extended over a commutative ring, J. Pure Applied Algebra 34 (1984), 265-275 Zbl0549.17009MR772062
  22. J.-L. Koszul, Homologie des complexes de formes différentielles d’ordre supérieur, Collection of articles dedicated to Henri Cartan on the occasion of his 70th birthday, I 7 (1974), 139-153, Ann. Sci. École Norm. Sup. (4) Zbl0316.58003
  23. T. A. Larsson, Lowest-energy representations of non-centrally extended diffeomorphism algebras, Comm. Math. Phys. 201 (1999), 461-470 Zbl0936.17025MR1682285
  24. P. Maier, Central extensions of topological current algebras, Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups 55 (2002), 61-76, Banach Center Publications, Warszawa Zbl1045.17008MR1911980
  25. K.-H. Neeb, Abelian extensions of infinite-dimensional Lie groups, Travaux mathématiques 15 (2004), 69-194 Zbl1079.22018MR2143422
  26. K.-H. Neeb, Lie algebra extensions and higher order cocycles, J. Geom. Sym. Phys. 5 (2006), 48-74 Zbl1105.53064MR2269881
  27. K.-H. Neeb, Non-abelian extensions of topological Lie algebras, Communications in Algebra 34 (2006), 991-1041 Zbl1158.17308MR2208114
  28. E. Neher, Extended affine Lie algebras, C. R. Math. Acad. Sci. Soc. R. Can. 26 (2004), 90-96 Zbl1072.17012MR2083842
  29. A. Pressley, G. Segal, Loop Groups, (1986), Oxford University Press, Oxford Zbl0618.22011MR900587
  30. B. I. Rosenfeld, Cohomology of certain infinite-dimensional Lie algebras, Funct. Anal. Appl. 13 (1971), 340-342 Zbl0248.57030
  31. T. Tsujishita, On the continuous cohomology of the Lie algebra of vector fields, Proc. Jap. Math. Soc. 53:A (1977), 134-138 Zbl0476.58032MR458517
  32. T. Tsujishita, Continuous cohomology of the Lie algebra of vector fields, Memoirs of the Amer. Math. Soc. 253 (1981) Zbl0482.58036MR634471

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.