Page 1 Next

Displaying 1 – 20 of 141

Showing per page

1 -cocycles on the group of contactomorphisms on the supercircle S 1 | 3 generalizing the Schwarzian derivative

Boujemaa Agrebaoui, Raja Hattab (2016)

Czechoslovak Mathematical Journal

The relative cohomology H diff 1 ( 𝕂 ( 1 | 3 ) , 𝔬𝔰𝔭 ( 2 , 3 ) ; 𝒟 λ , μ ( S 1 | 3 ) ) of the contact Lie superalgebra 𝕂 ( 1 | 3 ) with coefficients in the space of differential operators 𝒟 λ , μ ( S 1 | 3 ) acting on tensor densities on S 1 | 3 , is calculated in N. Ben Fraj, I. Laraied, S. Omri (2013) and the generating 1 -cocycles are expressed in terms of the infinitesimal super-Schwarzian derivative 1 -cocycle s ( X f ) = D 1 D 2 D 3 ( f ) α 3 1 / 2 , X f 𝕂 ( 1 | 3 ) which is invariant with respect to the conformal subsuperalgebra 𝔬𝔰𝔭 ( 2 , 3 ) of 𝕂 ( 1 | 3 ) . In this work we study the supergroup case. We give an explicit construction of 1 -cocycles of the group...

A constructive method to determine the variety of filiform Lie algebras

F. J. Echarte, M. C. Márquez, J. Núñez (2006)

Czechoslovak Mathematical Journal

In this paper we use cohomology of Lie algebras to study the variety of laws associated with filiform Lie algebras of a given dimension. As the main result, we describe a constructive way to find a small set of polynomials which define this variety. It allows to improve previous results related with the cardinal of this set. We have also computed explicitly these polynomials in the case of dimensions 11 and 12.

A non-abelian tensor product of Leibniz algebra

Allahtan Victor Gnedbaye (1999)

Annales de l'institut Fourier

Leibniz algebras are a non-commutative version of usual Lie algebras. We introduce a notion of (pre)crossed Leibniz algebra which is a simultaneous generalization of notions of representation and two-sided ideal of a Leibniz algebra. We construct the Leibniz algebra of biderivations on crossed Leibniz algebras and we define a non-abelian tensor product of Leibniz algebras. These two notions are adjoint to each other. A (co)homological characterization of these new algebraic objects enables us to...

Algèbres enveloppantes à homotopie près, homologies et cohomologies

Ridha Chatbouri (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

On présente une définition et une construction unifée des homologies et cohomologies d’algèbres et de modules sur ces algèbres et de modules sur ces algèbres dans le cas d’algèbres associatives ou commutatives ou de Lie ou de Gertsenhaber. On sépare la construction linéaire des cogèbres ou bicogèbres qui traduisent les symétries des relations de définition de la structure de la partie structure qui apparaît ici comme une codérivation de degré 1 et de carré nul de la cogèbre ou de la bicogèbre.

Associative and Lie deformations of Poisson algebras

Elisabeth Remm (2012)

Communications in Mathematics

Considering a Poisson algebra as a nonassociative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this nonassociative algebra. We give a natural interpretation of deformations which preserve the underlying associative structure and of deformations which preserve the underlying Lie algebra and we compare the associated cohomologies with the Poisson cohomology parametrizing the general deformations of Poisson algebras.

Characteristic homomorphism for ( F 1 , F 2 ) -foliated bundles over subfoliated manifolds

José Manuel Carballés (1984)

Annales de l'institut Fourier

In this paper a construction of characteristic classes for a subfoliation ( F 1 , F 2 ) is given by using Kamber-Tondeur’s techniques. For this purpose, the notion of ( F 1 , F 2 ) -foliated principal bundle, and the definition of its associated characteristic homomorphism, are introduced. The relation with the characteristic homomorphism of F i -foliated bundles, i = 1 , 2 , the results of Kamber-Tondeur on the cohomology of g - D G -algebras. Finally, Goldman’s results on the restriction of foliated bundles to the leaves of a foliation...

Coalgebraic Approach to the Loday Infinity Category, Stem Differential for 2 n -ary Graded and Homotopy Algebras

Mourad Ammar, Norbert Poncin (2010)

Annales de l’institut Fourier

We define a graded twisted-coassociative coproduct on the tensor algebra the desuspension space of a graded vector space V . The coderivations (resp. quadratic “degree 1” codifferentials, arbitrary odd codifferentials) of this coalgebra are 1-to-1 with sequences of multilinear maps on V (resp. graded Loday structures on V , sequences that we call Loday infinity structures on V ). We prove a minimal model theorem for Loday infinity algebras and observe that the Lod category contains the L category as...

Cohomologie des algèbres de Lie croisées et K -théorie de Milnor additive

Daniel Guin (1995)

Annales de l'institut Fourier

Dans cet article, nous définissons des modules de (co)-homologie 0 ( 𝔊 , 𝔄 ) , 1 ( 𝔊 , 𝔄 ) , ( 𝔊 , 𝔄 ) , 1 ( 𝔊 , 𝔄 ) 𝔊 et 𝔄 sont des algèbres de Lie munies d’une structure supplémentaire (algèbres de Lie croisées), qui satisfont les propriétés usuelles des foncteurs cohomologiques. Si A est une k -algèbre, nous utilisons ces modules d’homologie pour comparer le groupe d’homologie cyclique H C 1 ( A ) avec un analogue additif du groupe de K -théorie de Milnor K 2 Madd ( A ) .

Currently displaying 1 – 20 of 141

Page 1 Next