Differential Equations associated to Families of Algebraic Cycles

Pedro Luis del Angel[1]; Stefan Müller-Stach[2]

  • [1] CIMAT Guanajuato, Mexico (Mexique)
  • [2] Johannes Gutenberg–Universität Mainz Institut für Mathematik Fachbereich 08 (Deutschland)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 6, page 2075-2085
  • ISSN: 0373-0956

Abstract

top
We develop a theory of differential equations associated to families of algebraic cycles in higher Chow groups (i.e., motivic cohomology groups). This formalism is related to inhomogenous Picard–Fuchs type differential equations. For a families of K3 surfaces the corresponding non–linear ODE turns out to be similar to Chazy’s equation.

How to cite

top

del Angel, Pedro Luis, and Müller-Stach, Stefan. "Differential Equations associated to Families of Algebraic Cycles." Annales de l’institut Fourier 58.6 (2008): 2075-2085. <http://eudml.org/doc/10370>.

@article{delAngel2008,
abstract = {We develop a theory of differential equations associated to families of algebraic cycles in higher Chow groups (i.e., motivic cohomology groups). This formalism is related to inhomogenous Picard–Fuchs type differential equations. For a families of K3 surfaces the corresponding non–linear ODE turns out to be similar to Chazy’s equation.},
affiliation = {CIMAT Guanajuato, Mexico (Mexique); Johannes Gutenberg–Universität Mainz Institut für Mathematik Fachbereich 08 (Deutschland)},
author = {del Angel, Pedro Luis, Müller-Stach, Stefan},
journal = {Annales de l’institut Fourier},
keywords = {Higher Chow group; Picard-Fuchs operator; normal function; differential equation; higher Chow group},
language = {eng},
number = {6},
pages = {2075-2085},
publisher = {Association des Annales de l’institut Fourier},
title = {Differential Equations associated to Families of Algebraic Cycles},
url = {http://eudml.org/doc/10370},
volume = {58},
year = {2008},
}

TY - JOUR
AU - del Angel, Pedro Luis
AU - Müller-Stach, Stefan
TI - Differential Equations associated to Families of Algebraic Cycles
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 6
SP - 2075
EP - 2085
AB - We develop a theory of differential equations associated to families of algebraic cycles in higher Chow groups (i.e., motivic cohomology groups). This formalism is related to inhomogenous Picard–Fuchs type differential equations. For a families of K3 surfaces the corresponding non–linear ODE turns out to be similar to Chazy’s equation.
LA - eng
KW - Higher Chow group; Picard-Fuchs operator; normal function; differential equation; higher Chow group
UR - http://eudml.org/doc/10370
ER -

References

top
  1. Y. André, G –functions, E13 (1989), Viehweg Verlag 
  2. S. Bloch, Higher Chow groups: Basic definitions and properties 
  3. S. Bloch, Algebraic cycles and the Beilinson conjectures, Contemporary Math. 58 (1986), 65-79 Zbl0605.14017MR860404
  4. Ph. Boalch, Symplectic manifolds and isomonodromic deformations, Adv. Math. 163 (2001), 137-205 Zbl1001.53059MR1864833
  5. J. Carlson, S. Müller-Stach, Ch. Peters, Period mappings and period domains, (2003), Cambridge Univ. Press Zbl1030.14004MR2012297
  6. J. Chazy, Sur les équations différentielles du troisième ordre et d’ordre supérieur dont l’intégrale générale a ses points critiques fixes, Acta Math. 34 (1910), 317-385 Zbl42.0340.03
  7. P. L. del Angel, S. Müller-Stach, The transcendental part of the regulator map for K 1 on a family of K3 surfaces, Duke Journal 12 (2002), 581-598 Zbl1060.14011
  8. P. Deligne, Équations différentielles à points réguliers singuliers, (1970), Springer Zbl0244.14004MR417174
  9. R. Fuchs, Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen, Math. Ann. 63 (1907), 301-321 Zbl38.0362.01MR1511408
  10. Ph. Griffiths, A theorem concerning the differential equations satisfied by normal functions associated to algebraic cycles, Amer. J. Math. 101 (1979), 94-131 Zbl0453.14001MR527828
  11. M. Kerr, J. Lewis, S. Müller–Stach, The Abel-Jacobi map for higher Chow groups, Compositio Math. 142 (2006), 374-396 Zbl1123.14006MR2218900
  12. V. Kulikov, Mixed Hodge structures and singularities, (1998), Cambridge Univ. Press Zbl0902.14005MR1621831
  13. Y. I. Manin, Sixth Painlevé equation, universal elliptic curve and mirror of 2 , Amer. Math. Soc. Translations 186 (1998), 131-151 Zbl0948.14025MR1732409
  14. D. Morrison, J. Walcher, D–branes and normal functions, (2007) Zbl1166.81036
  15. S. Müller–Stach, Constructing indecomposable motivic cohomology classes on algebraic surfaces, J. Algebraic Geom. 6 (1997), 513-543 Zbl0910.14017MR1487225
  16. P. Painlevé, Stockholm lectures, (1897), Hermann Paris Zbl28.0262.01
  17. M. Saito, Admissible normal functions, J. Algebraic Geom. 5 (1996), 235-276 Zbl0918.14018MR1374710
  18. J. Steenbrink, S. Zucker, Variation of mixed Hodge structure I, Invent. Math. 80 (1985), 489-542 Zbl0626.14007MR791673
  19. P. Stiller, Special values of Dirichlet series, monodromy, and the periods of automorphic forms, (1984), AMS Zbl0536.10023MR743544
  20. U. Umemura, 100 years of the Painlevé equation, Sugaku 51 (1999), 395-420 MR1764545

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.