Differential Equations associated to Families of Algebraic Cycles
Pedro Luis del Angel[1]; Stefan Müller-Stach[2]
- [1] CIMAT Guanajuato, Mexico (Mexique)
- [2] Johannes Gutenberg–Universität Mainz Institut für Mathematik Fachbereich 08 (Deutschland)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 6, page 2075-2085
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topdel Angel, Pedro Luis, and Müller-Stach, Stefan. "Differential Equations associated to Families of Algebraic Cycles." Annales de l’institut Fourier 58.6 (2008): 2075-2085. <http://eudml.org/doc/10370>.
@article{delAngel2008,
abstract = {We develop a theory of differential equations associated to families of algebraic cycles in higher Chow groups (i.e., motivic cohomology groups). This formalism is related to inhomogenous Picard–Fuchs type differential equations. For a families of K3 surfaces the corresponding non–linear ODE turns out to be similar to Chazy’s equation.},
affiliation = {CIMAT Guanajuato, Mexico (Mexique); Johannes Gutenberg–Universität Mainz Institut für Mathematik Fachbereich 08 (Deutschland)},
author = {del Angel, Pedro Luis, Müller-Stach, Stefan},
journal = {Annales de l’institut Fourier},
keywords = {Higher Chow group; Picard-Fuchs operator; normal function; differential equation; higher Chow group},
language = {eng},
number = {6},
pages = {2075-2085},
publisher = {Association des Annales de l’institut Fourier},
title = {Differential Equations associated to Families of Algebraic Cycles},
url = {http://eudml.org/doc/10370},
volume = {58},
year = {2008},
}
TY - JOUR
AU - del Angel, Pedro Luis
AU - Müller-Stach, Stefan
TI - Differential Equations associated to Families of Algebraic Cycles
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 6
SP - 2075
EP - 2085
AB - We develop a theory of differential equations associated to families of algebraic cycles in higher Chow groups (i.e., motivic cohomology groups). This formalism is related to inhomogenous Picard–Fuchs type differential equations. For a families of K3 surfaces the corresponding non–linear ODE turns out to be similar to Chazy’s equation.
LA - eng
KW - Higher Chow group; Picard-Fuchs operator; normal function; differential equation; higher Chow group
UR - http://eudml.org/doc/10370
ER -
References
top- Y. André, –functions, E13 (1989), Viehweg Verlag
- S. Bloch, Higher Chow groups: Basic definitions and properties
- S. Bloch, Algebraic cycles and the Beilinson conjectures, Contemporary Math. 58 (1986), 65-79 Zbl0605.14017MR860404
- Ph. Boalch, Symplectic manifolds and isomonodromic deformations, Adv. Math. 163 (2001), 137-205 Zbl1001.53059MR1864833
- J. Carlson, S. Müller-Stach, Ch. Peters, Period mappings and period domains, (2003), Cambridge Univ. Press Zbl1030.14004MR2012297
- J. Chazy, Sur les équations différentielles du troisième ordre et d’ordre supérieur dont l’intégrale générale a ses points critiques fixes, Acta Math. 34 (1910), 317-385 Zbl42.0340.03
- P. L. del Angel, S. Müller-Stach, The transcendental part of the regulator map for on a family of K3 surfaces, Duke Journal 12 (2002), 581-598 Zbl1060.14011
- P. Deligne, Équations différentielles à points réguliers singuliers, (1970), Springer Zbl0244.14004MR417174
- R. Fuchs, Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen, Math. Ann. 63 (1907), 301-321 Zbl38.0362.01MR1511408
- Ph. Griffiths, A theorem concerning the differential equations satisfied by normal functions associated to algebraic cycles, Amer. J. Math. 101 (1979), 94-131 Zbl0453.14001MR527828
- M. Kerr, J. Lewis, S. Müller–Stach, The Abel-Jacobi map for higher Chow groups, Compositio Math. 142 (2006), 374-396 Zbl1123.14006MR2218900
- V. Kulikov, Mixed Hodge structures and singularities, (1998), Cambridge Univ. Press Zbl0902.14005MR1621831
- Y. I. Manin, Sixth Painlevé equation, universal elliptic curve and mirror of , Amer. Math. Soc. Translations 186 (1998), 131-151 Zbl0948.14025MR1732409
- D. Morrison, J. Walcher, D–branes and normal functions, (2007) Zbl1166.81036
- S. Müller–Stach, Constructing indecomposable motivic cohomology classes on algebraic surfaces, J. Algebraic Geom. 6 (1997), 513-543 Zbl0910.14017MR1487225
- P. Painlevé, Stockholm lectures, (1897), Hermann Paris Zbl28.0262.01
- M. Saito, Admissible normal functions, J. Algebraic Geom. 5 (1996), 235-276 Zbl0918.14018MR1374710
- J. Steenbrink, S. Zucker, Variation of mixed Hodge structure I, Invent. Math. 80 (1985), 489-542 Zbl0626.14007MR791673
- P. Stiller, Special values of Dirichlet series, monodromy, and the periods of automorphic forms, (1984), AMS Zbl0536.10023MR743544
- U. Umemura, 100 years of the Painlevé equation, Sugaku 51 (1999), 395-420 MR1764545
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.