A family of K3 surfaces and ... (3).
Soit une fraction rationnelle à coefficients entiers, vérifiant des hypothèses assez générales. On prouve l’existence d’une infinité d’entiers , ayant exactement deux facteurs premiers, tels que la somme d’exponentielles soit en , où est une constante ne dépendant que de la géométrie de . On donne aussi des résultats de répartition du type Sato-Tate, pour certaines sommes de Salié, modulo , avec entier comme ci- dessus.
Nous démontrons divers résultats sur le plus grand quotient du groupe fondamental étale premier aux caractéristiques, parmi lesquels la formule de Künneth et l’invariance par changement de corps séparablement clos pour les schémas de type fini sur un corps. Ces énoncés sont déduits de faits généraux sur les images directes de champs, une fois spécialisés au cas des torseurs sous un groupe constant fini d’ordre inversible sur la base. Des résultats analogues pour le groupe fondamental modéré sont...
We consider a generic complex polynomial in two variables and a basis in the first homology group of a nonsingular level curve. We take an arbitrary tuple of homogeneous polynomial 1-forms of appropriate degrees so that their integrals over the basic cycles form a square matrix (of multivalued analytic functions of the level value). We give an explicit formula for the determinant of this matrix.
These are the notes from a one-week course on Braid Monodromy of Algebraic Curves given at the Université de Pau et des Pays de l’Adour during the Première Ecole Franco-Espagnole: Groupes de tresses et topologie en petite dimension in October 2009.This is intended to be an introductory survey through which we hope we can briefly outline the power of the concept monodromy as a common area for group theory, algebraic geometry, and topology of projective curves.The main classical results are stated...
In this work, we describe the historic links between the study of -dimensional manifolds (specially knot theory) and the study of the topology of complex plane curves with a particular attention to the role of braid groups and Alexander-like invariants (torsions, different instances of Alexander polynomials). We finish with detailed computations in an example.
Nous donnons une méthode pour calculer le nombre de cycles évanouissants d’une hypersurface complexe n’ayant pas nécessairement des singularités isolées.