Neumann problems associated to nonhomogeneous differential operators in Orlicz–Sobolev spaces

Mihai Mihăilescu[1]; Vicenţiu Rădulescu[2]

  • [1] University of Craiova Department of Mathematics 200585 Craiova (Romania) Central European University Department of Mathematics 1051 Budapest (Hungary)
  • [2] Institute of Mathematics “Simion Stoilow” of the Romanian Academy P.O. Box 1-764 014700 Bucharest (Romania) University of Craiova Department of Mathematics 200585 Craiova (Romania)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 6, page 2087-2111
  • ISSN: 0373-0956

Abstract

top
We study a nonlinear Neumann boundary value problem associated to a nonhomogeneous differential operator. Taking into account the competition between the nonlinearity and the bifurcation parameter, we establish sufficient conditions for the existence of nontrivial solutions in a related Orlicz–Sobolev space.

How to cite

top

Mihăilescu, Mihai, and Rădulescu, Vicenţiu. "Neumann problems associated to nonhomogeneous differential operators in Orlicz–Sobolev spaces." Annales de l’institut Fourier 58.6 (2008): 2087-2111. <http://eudml.org/doc/10371>.

@article{Mihăilescu2008,
abstract = {We study a nonlinear Neumann boundary value problem associated to a nonhomogeneous differential operator. Taking into account the competition between the nonlinearity and the bifurcation parameter, we establish sufficient conditions for the existence of nontrivial solutions in a related Orlicz–Sobolev space.},
affiliation = {University of Craiova Department of Mathematics 200585 Craiova (Romania) Central European University Department of Mathematics 1051 Budapest (Hungary); Institute of Mathematics “Simion Stoilow” of the Romanian Academy P.O. Box 1-764 014700 Bucharest (Romania) University of Craiova Department of Mathematics 200585 Craiova (Romania)},
author = {Mihăilescu, Mihai, Rădulescu, Vicenţiu},
journal = {Annales de l’institut Fourier},
keywords = {Nonhomogeneous differential operator; nonlinear partial differential equation; Neumann boundary value problem; Orlicz–Sobolev space; nonhomogeneous differential operator; Orlicz-Sobolev space},
language = {eng},
number = {6},
pages = {2087-2111},
publisher = {Association des Annales de l’institut Fourier},
title = {Neumann problems associated to nonhomogeneous differential operators in Orlicz–Sobolev spaces},
url = {http://eudml.org/doc/10371},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Mihăilescu, Mihai
AU - Rădulescu, Vicenţiu
TI - Neumann problems associated to nonhomogeneous differential operators in Orlicz–Sobolev spaces
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 6
SP - 2087
EP - 2111
AB - We study a nonlinear Neumann boundary value problem associated to a nonhomogeneous differential operator. Taking into account the competition between the nonlinearity and the bifurcation parameter, we establish sufficient conditions for the existence of nontrivial solutions in a related Orlicz–Sobolev space.
LA - eng
KW - Nonhomogeneous differential operator; nonlinear partial differential equation; Neumann boundary value problem; Orlicz–Sobolev space; nonhomogeneous differential operator; Orlicz-Sobolev space
UR - http://eudml.org/doc/10371
ER -

References

top
  1. Emilio Acerbi, Giuseppe Mingione, Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech. Anal. 156 (2001), 121-140 Zbl0984.49020MR1814973
  2. Robert A. Adams, Sobolev spaces, (1975), Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London Zbl0314.46030MR450957
  3. Haïm Brezis, Analyse fonctionnelle, (1983), Masson, Paris Zbl0511.46001
  4. Yunmei Chen, Stacey Levine, Murali Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), 1383-1406 (electronic) Zbl1102.49010MR2246061
  5. Ph. Clément, M. García-Huidobro, R. Manásevich, K. Schmitt, Mountain pass type solutions for quasilinear elliptic equations, Calc. Var. Partial Differential Equations 11 (2000), 33-62 Zbl0959.35057MR1777463
  6. Philippe Clément, Ben de Pagter, Guido Sweers, François de Thélin, Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces, Mediterr. J. Math. 1 (2004), 241-267 Zbl1167.35352MR2094464
  7. Gabriele Dankert, Sobolev Embedding Theorems in Orlicz Spaces, (1966) Zbl0287.46036
  8. Lars Diening, Theorical and numerical results for electrorheological fluids, (2002) Zbl1022.76001
  9. Lars Diening, Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math. 129 (2005), 657-700 Zbl1096.46013MR2166733
  10. Thomas K. Donaldson, Neil S. Trudinger, Orlicz-Sobolev spaces and imbedding theorems, J. Functional Analysis 8 (1971), 52-75 Zbl0216.15702MR301500
  11. D. E. Edmunds, J. Lang, A. Nekvinda, On L p ( x ) norms, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999), 219-225 Zbl0953.46018MR1700499
  12. David E. Edmunds, Jiří Rákosník, Density of smooth functions in W k , p ( x ) ( Ω ) , Proc. Roy. Soc. London Ser. A 437 (1992), 229-236 Zbl0779.46027MR1177754
  13. David E. Edmunds, Jiří Rákosník, Sobolev embeddings with variable exponent, Studia Math. 143 (2000), 267-293 Zbl0974.46040MR1815935
  14. I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353 Zbl0286.49015MR346619
  15. Xianling Fan, Jishen Shen, Dun Zhao, Sobolev embedding theorems for spaces W k , p ( x ) ( Ω ) , J. Math. Anal. Appl. 262 (2001), 749-760 Zbl0995.46023MR1859337
  16. Xianling Fan, Dun Zhao, On the spaces L p ( x ) ( Ω ) and W m , p ( x ) ( Ω ) , J. Math. Anal. Appl. 263 (2001), 424-446 Zbl1028.46041MR1866056
  17. Thomas C. Halsey, Electrorheological Fluids, Science 258 (1992), 761-766 
  18. Ondrej Kováčik, Jiří Rákosník, On spaces L p ( x ) and W k , p ( x ) , Czechoslovak Math. J. 41(116) (1991), 592-618 Zbl0784.46029MR1134951
  19. John Lamperti, On the isometries of certain function-spaces, Pacific J. Math. 8 (1958), 459-466 Zbl0085.09702MR105017
  20. Paolo Marcellini, Regularity and existence of solutions of elliptic equations with p , q -growth conditions, J. Differential Equations 90 (1991), 1-30 Zbl0724.35043MR1094446
  21. Mihai Mihăilescu, Patrizia Pucci, Vicenţiu Rădulescu, Nonhomogeneous boundary value problems in anisotropic Sobolev spaces, C. R. Math. Acad. Sci. Paris 345 (2007), 561-566 Zbl1127.35020MR2374465
  22. Mihai Mihăilescu, Vicenţiu Rădulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 462 (2006), 2625-2641 Zbl1149.76692MR2253555
  23. Mihai Mihăilescu, Vicenţiu Rădulescu, Existence and multiplicity of solutions for quasilinear nonhomogeneous problems: an Orlicz-Sobolev space setting, J. Math. Anal. Appl. 330 (2007), 416-432 Zbl1176.35071MR2302933
  24. Mihai Mihăilescu, Vicenţiu Rădulescu, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc. 135 (2007), 2929-2937 (electronic) Zbl1146.35067MR2317971
  25. Mihai Mihăilescu, Vicenţiu Rădulescu, Continuous spectrum for a class of nonhomogeneous differential operators, Manuscripta Math. 125 (2008), 157-167 Zbl1138.35070MR2373080
  26. J. Musielak, W. Orlicz, On modular spaces, Studia Math. 18 (1959), 49-65 Zbl0086.08901MR101487
  27. Julian Musielak, Orlicz spaces and modular spaces, 1034 (1983), Springer-Verlag, Berlin Zbl0557.46020MR724434
  28. Hidegorô Nakano, Modulared Semi-Ordered Linear Spaces, (1950), Maruzen Co. Ltd., Tokyo Zbl0041.23401MR38565
  29. R. O’Neill, Fractional integration in Orlicz spaces, Trans. Amer. Math. Soc. 115 (1965), 300-328 Zbl0132.09201
  30. Władysław Orlicz, Über konjugierte Exponentenfolgen, Studia Math. 3 (1931), 200-211 Zbl0003.25203
  31. K. R. Rajagopal, M. Růžička, Mathematical modelling of electrorheological fluids, Cont. Mech. Term. 13 (2001), 59-78 Zbl0971.76100
  32. M. Růžička, Electrorheological fluids: modeling and mathematical theory, Sūrikaisekikenkyūsho Kōkyūroku (2000), 16-38 Zbl0968.76531MR1788852
  33. Michael Struwe, Variational methods, 34 (1996), Springer-Verlag, Berlin Zbl0864.49001MR1411681
  34. V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), 675-710, 877 Zbl0599.49031MR864171
  35. V. V. Zhikov, Meyer-type estimates for solving the nonlinear Stokes system, Differ. Uravn. 33 (1997), 107-114, 143 Zbl0911.35089MR1607245

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.