Infinitely many weak solutions for a non-homogeneous Neumann problem in Orlicz--Sobolev spaces
Ghasem A. Afrouzi; Shaeid Shokooh; Nguyen T. Chung
Commentationes Mathematicae Universitatis Carolinae (2019)
- Volume: 60, Issue: 3, page 361-378
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAfrouzi, Ghasem A., Shokooh, Shaeid, and Chung, Nguyen T.. "Infinitely many weak solutions for a non-homogeneous Neumann problem in Orlicz--Sobolev spaces." Commentationes Mathematicae Universitatis Carolinae 60.3 (2019): 361-378. <http://eudml.org/doc/294581>.
@article{Afrouzi2019,
abstract = {Under a suitable oscillatory behavior either at infinity or at zero of the nonlinear term, the existence of infinitely many weak solutions for a non-homogeneous Neumann problem, in an appropriate Orlicz--Sobolev setting, is proved. The technical approach is based on variational methods.},
author = {Afrouzi, Ghasem A., Shokooh, Shaeid, Chung, Nguyen T.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {non-homogeneous Neumann problem; variational methods; Orlicz--Sobolev space},
language = {eng},
number = {3},
pages = {361-378},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Infinitely many weak solutions for a non-homogeneous Neumann problem in Orlicz--Sobolev spaces},
url = {http://eudml.org/doc/294581},
volume = {60},
year = {2019},
}
TY - JOUR
AU - Afrouzi, Ghasem A.
AU - Shokooh, Shaeid
AU - Chung, Nguyen T.
TI - Infinitely many weak solutions for a non-homogeneous Neumann problem in Orlicz--Sobolev spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2019
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 60
IS - 3
SP - 361
EP - 378
AB - Under a suitable oscillatory behavior either at infinity or at zero of the nonlinear term, the existence of infinitely many weak solutions for a non-homogeneous Neumann problem, in an appropriate Orlicz--Sobolev setting, is proved. The technical approach is based on variational methods.
LA - eng
KW - non-homogeneous Neumann problem; variational methods; Orlicz--Sobolev space
UR - http://eudml.org/doc/294581
ER -
References
top- Adams R. A., Sobolev Spaces, Pure and Applied Mathematics, 65, Academic Press, New York, 1975. Zbl1098.46001MR0450957
- Afrouzi G. A., Graef J. R., Shokooh S., 10.18514/MMN.2017.1906, Miskolc Math. Notes 18 (2017), no. 1, 31–45. MR3669881DOI10.18514/MMN.2017.1906
- Afrouzi G. A., Heidarkhani S., Shokooh S., Infinitely many solutions for Steklov problems associated to non-homogeneous differential operators through Orlicz–Sobolev spaces, Complex Var. Elliptic Equ. 60 (2015), no. 11, 1505–1521. MR3393865
- Afrouzi G. A., Rădulescu V., Shokooh S., 10.1007/s40840-015-0153-x, Bull. Malays. Math. Sci. Soc. 40 (2017), no. 4, 1591–1611. MR3712573DOI10.1007/s40840-015-0153-x
- Bonanno G., 10.1016/j.na.2011.12.003, Nonlinear Anal. 75 (2012), no. 5, 2992–3007. MR2878492DOI10.1016/j.na.2011.12.003
- Bonanno G., Bisci G. M., Rădulescu V., 10.1016/j.na.2011.04.049, Nonlinear Anal. 74 (2011), no. 14, 4785–4795. MR2810717DOI10.1016/j.na.2011.04.049
- Bonanno G., Bisci G. M., Rădulescu V., 10.1016/j.crma.2011.02.009, C. R. Math. Acad. Sci. Paris 349 (2011), no. 5–6, 263–268. MR2783317DOI10.1016/j.crma.2011.02.009
- Bonanno G., Bisci G. M., Rădulescu V., 10.1007/s00605-010-0280-2, Monatsh. Math. 165 (2012), no. 3–4, 305–318. MR2891255DOI10.1007/s00605-010-0280-2
- Bonanno G., Bisci G. M., Rădulescu V., 10.1016/j.na.2011.12.016, Nonlinear Anal. 75 (2012), no. 12, 4441–4456. MR2927113DOI10.1016/j.na.2011.12.016
- Bonanno G., Candito P., 10.1080/00036810902942242, Appl. Anal. 88 (2009), no. 4, 605–616. MR2541143DOI10.1080/00036810902942242
- Bonanno G., Di Bella B., 10.1007/s00030-011-0099-0, NoDEA Nonlinear Differential Equations Appl. 18 (2011), no. 3, 357–368. MR2811057DOI10.1007/s00030-011-0099-0
- Chabrowski J., Fu Y., 10.1016/j.jmaa.2004.10.028, J. Math. Anal. Appl. 306 (2005), no. 2, 604–618. MR2136336DOI10.1016/j.jmaa.2004.10.028
- Clément Ph., de Pagter B., Sweers G., de Thélin F., 10.1007/s00009-004-0014-6, Mediterr. J. Math. 1 (2004), no. 3, 241–267. MR2094464DOI10.1007/s00009-004-0014-6
- D'Aguì G., Sciammetta A., 10.1016/j.na.2012.05.009, Nonlinear Anal. 75 (2012), no. 14, 5612–5619. MR2942940DOI10.1016/j.na.2012.05.009
- Diening L., Maximal function on Musielak–Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math. 129 (2005), no. 8, 657–700. MR2166733
- Fan X., 10.1016/j.jmaa.2005.03.057, J. Math. Anal. Appl. 312 (2005), no. 2, 464–477. MR2179089DOI10.1016/j.jmaa.2005.03.057
- Fan X., Zhao D., On the spaces and , J. Math. Anal. Appl. 263 (2001), no. 2, 424–446. MR1866056
- Fan X., Zhang Q., Zhao D., 10.1016/j.jmaa.2003.11.020, J. Math. Anal. Appl. 302 (2005), no. 2, 306–317. MR2107835DOI10.1016/j.jmaa.2003.11.020
- Halsey T. C., 10.1126/science.258.5083.761, Science 258 (1992), 761–766. DOI10.1126/science.258.5083.761
- Kováčik O., Rákosník J., On spaces and , Czechoslovak Math. J. 41 (1991), no. 4, 592–618. MR1134951
- Kristály A., Mihăilescu M., Rădulescu V., Two non-trivial solutions for a non-homogeneous Neumann problem: an Orlicz–Sobolev space setting, Proc. Roy. Soc. Edinburgh Sect. A 139 (2009), no. 2, 367–379. MR2496969
- Mihăilescu M., Rădulescu V., 10.1142/S0219530508001067, Anal. Appl. (Singap.) 6 (2008), no. 1, 83–98. MR2380887DOI10.1142/S0219530508001067
- Mihăilescu M., Rădulescu V., 10.5802/aif.2407, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 6, 2087–2111. MR2473630DOI10.5802/aif.2407
- Musielak J., Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, 1034, Springer, Berlin, 1983. Zbl0557.46020MR0724434
- Pfeiffer C., Mavroidis C., Cohen Y. B., Dolgin B., Electrorheological fluid based force feedback device, Conference on Telemanipulator and Telepresence Technologies VI, Part of SPIE's Photonics East, Boston, Proc. 3840 (1999), 88–99.
- Rao M. M., Ren Z. D., Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker, New York. 1991. Zbl0724.46032MR1113700
- Ricceri B., 10.1016/S0377-0427(99)00269-1, J. Comput. Appl. Math. 113 (2000), no. 1–2, 401–410. MR1735837DOI10.1016/S0377-0427(99)00269-1
- Růžička M., 10.1007/BFb0104030, Lecture Notes in Mathematics, 1748, Springer, Berlin, 2000. Zbl0968.76531MR1810360DOI10.1007/BFb0104030
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.