Infinitely many weak solutions for a non-homogeneous Neumann problem in Orlicz--Sobolev spaces

Ghasem A. Afrouzi; Shaeid Shokooh; Nguyen T. Chung

Commentationes Mathematicae Universitatis Carolinae (2019)

  • Volume: 60, Issue: 3, page 361-378
  • ISSN: 0010-2628

Abstract

top
Under a suitable oscillatory behavior either at infinity or at zero of the nonlinear term, the existence of infinitely many weak solutions for a non-homogeneous Neumann problem, in an appropriate Orlicz--Sobolev setting, is proved. The technical approach is based on variational methods.

How to cite

top

Afrouzi, Ghasem A., Shokooh, Shaeid, and Chung, Nguyen T.. "Infinitely many weak solutions for a non-homogeneous Neumann problem in Orlicz--Sobolev spaces." Commentationes Mathematicae Universitatis Carolinae 60.3 (2019): 361-378. <http://eudml.org/doc/294581>.

@article{Afrouzi2019,
abstract = {Under a suitable oscillatory behavior either at infinity or at zero of the nonlinear term, the existence of infinitely many weak solutions for a non-homogeneous Neumann problem, in an appropriate Orlicz--Sobolev setting, is proved. The technical approach is based on variational methods.},
author = {Afrouzi, Ghasem A., Shokooh, Shaeid, Chung, Nguyen T.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {non-homogeneous Neumann problem; variational methods; Orlicz--Sobolev space},
language = {eng},
number = {3},
pages = {361-378},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Infinitely many weak solutions for a non-homogeneous Neumann problem in Orlicz--Sobolev spaces},
url = {http://eudml.org/doc/294581},
volume = {60},
year = {2019},
}

TY - JOUR
AU - Afrouzi, Ghasem A.
AU - Shokooh, Shaeid
AU - Chung, Nguyen T.
TI - Infinitely many weak solutions for a non-homogeneous Neumann problem in Orlicz--Sobolev spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2019
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 60
IS - 3
SP - 361
EP - 378
AB - Under a suitable oscillatory behavior either at infinity or at zero of the nonlinear term, the existence of infinitely many weak solutions for a non-homogeneous Neumann problem, in an appropriate Orlicz--Sobolev setting, is proved. The technical approach is based on variational methods.
LA - eng
KW - non-homogeneous Neumann problem; variational methods; Orlicz--Sobolev space
UR - http://eudml.org/doc/294581
ER -

References

top
  1. Adams R. A., Sobolev Spaces, Pure and Applied Mathematics, 65, Academic Press, New York, 1975. Zbl1098.46001MR0450957
  2. Afrouzi G. A., Graef J. R., Shokooh S., 10.18514/MMN.2017.1906, Miskolc Math. Notes 18 (2017), no. 1, 31–45. MR3669881DOI10.18514/MMN.2017.1906
  3. Afrouzi G. A., Heidarkhani S., Shokooh S., Infinitely many solutions for Steklov problems associated to non-homogeneous differential operators through Orlicz–Sobolev spaces, Complex Var. Elliptic Equ. 60 (2015), no. 11, 1505–1521. MR3393865
  4. Afrouzi G. A., Rădulescu V., Shokooh S., 10.1007/s40840-015-0153-x, Bull. Malays. Math. Sci. Soc. 40 (2017), no. 4, 1591–1611. MR3712573DOI10.1007/s40840-015-0153-x
  5. Bonanno G., 10.1016/j.na.2011.12.003, Nonlinear Anal. 75 (2012), no. 5, 2992–3007. MR2878492DOI10.1016/j.na.2011.12.003
  6. Bonanno G., Bisci G. M., Rădulescu V., 10.1016/j.na.2011.04.049, Nonlinear Anal. 74 (2011), no. 14, 4785–4795. MR2810717DOI10.1016/j.na.2011.04.049
  7. Bonanno G., Bisci G. M., Rădulescu V., 10.1016/j.crma.2011.02.009, C. R. Math. Acad. Sci. Paris 349 (2011), no. 5–6, 263–268. MR2783317DOI10.1016/j.crma.2011.02.009
  8. Bonanno G., Bisci G. M., Rădulescu V., 10.1007/s00605-010-0280-2, Monatsh. Math. 165 (2012), no. 3–4, 305–318. MR2891255DOI10.1007/s00605-010-0280-2
  9. Bonanno G., Bisci G. M., Rădulescu V., 10.1016/j.na.2011.12.016, Nonlinear Anal. 75 (2012), no. 12, 4441–4456. MR2927113DOI10.1016/j.na.2011.12.016
  10. Bonanno G., Candito P., 10.1080/00036810902942242, Appl. Anal. 88 (2009), no. 4, 605–616. MR2541143DOI10.1080/00036810902942242
  11. Bonanno G., Di Bella B., 10.1007/s00030-011-0099-0, NoDEA Nonlinear Differential Equations Appl. 18 (2011), no. 3, 357–368. MR2811057DOI10.1007/s00030-011-0099-0
  12. Chabrowski J., Fu Y., 10.1016/j.jmaa.2004.10.028, J. Math. Anal. Appl. 306 (2005), no. 2, 604–618. MR2136336DOI10.1016/j.jmaa.2004.10.028
  13. Clément Ph., de Pagter B., Sweers G., de Thélin F., 10.1007/s00009-004-0014-6, Mediterr. J. Math. 1 (2004), no. 3, 241–267. MR2094464DOI10.1007/s00009-004-0014-6
  14. D'Aguì G., Sciammetta A., 10.1016/j.na.2012.05.009, Nonlinear Anal. 75 (2012), no. 14, 5612–5619. MR2942940DOI10.1016/j.na.2012.05.009
  15. Diening L., Maximal function on Musielak–Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math. 129 (2005), no. 8, 657–700. MR2166733
  16. Fan X., 10.1016/j.jmaa.2005.03.057, J. Math. Anal. Appl. 312 (2005), no. 2, 464–477. MR2179089DOI10.1016/j.jmaa.2005.03.057
  17. Fan X., Zhao D., On the spaces L p ( x ) ( Ω ) and W m , p ( x ) ( Ω ) , J. Math. Anal. Appl. 263 (2001), no. 2, 424–446. MR1866056
  18. Fan X., Zhang Q., Zhao D., 10.1016/j.jmaa.2003.11.020, J. Math. Anal. Appl. 302 (2005), no. 2, 306–317. MR2107835DOI10.1016/j.jmaa.2003.11.020
  19. Halsey T. C., 10.1126/science.258.5083.761, Science 258 (1992), 761–766. DOI10.1126/science.258.5083.761
  20. Kováčik O., Rákosník J., On spaces L p ( x ) ( Ω ) and W m , p ( x ) ( Ω ) , Czechoslovak Math. J. 41 (1991), no. 4, 592–618. MR1134951
  21. Kristály A., Mihăilescu M., Rădulescu V., Two non-trivial solutions for a non-homogeneous Neumann problem: an Orlicz–Sobolev space setting, Proc. Roy. Soc. Edinburgh Sect. A 139 (2009), no. 2, 367–379. MR2496969
  22. Mihăilescu M., Rădulescu V., 10.1142/S0219530508001067, Anal. Appl. (Singap.) 6 (2008), no. 1, 83–98. MR2380887DOI10.1142/S0219530508001067
  23. Mihăilescu M., Rădulescu V., 10.5802/aif.2407, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 6, 2087–2111. MR2473630DOI10.5802/aif.2407
  24. Musielak J., Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, 1034, Springer, Berlin, 1983. Zbl0557.46020MR0724434
  25. Pfeiffer C., Mavroidis C., Cohen Y. B., Dolgin B., Electrorheological fluid based force feedback device, Conference on Telemanipulator and Telepresence Technologies VI, Part of SPIE's Photonics East, Boston, Proc. 3840 (1999), 88–99. 
  26. Rao M. M., Ren Z. D., Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker, New York. 1991. Zbl0724.46032MR1113700
  27. Ricceri B., 10.1016/S0377-0427(99)00269-1, J. Comput. Appl. Math. 113 (2000), no. 1–2, 401–410. MR1735837DOI10.1016/S0377-0427(99)00269-1
  28. Růžička M., 10.1007/BFb0104030, Lecture Notes in Mathematics, 1748, Springer, Berlin, 2000. Zbl0968.76531MR1810360DOI10.1007/BFb0104030

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.