A Hilbert Lemniscate Theorem in 2

Thomas Bloom[1]; Norman Levenberg[2]; Yu. Lyubarskii[3]

  • [1] University of Toronto Toronto (Canada)
  • [2] Indiana University Bloomington, IN 47405 (USA)
  • [3] Norwegian University of Science and Technology Trondheim, 7491 (Norway)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 6, page 2191-2220
  • ISSN: 0373-0956

Abstract

top
For a regular, compact, polynomially convex circled set K in C 2 , we construct a sequence of pairs { P n , Q n } of homogeneous polynomials in two variables with deg P n = deg Q n = n such that the sets K n : = { ( z , w ) C 2 : | P n ( z , w ) | 1 , | Q n ( z , w ) | 1 } approximate K and if K is the closure of a strictly pseudoconvex domain the normalized counting measures associated to the finite set { P n = Q n = 1 } converge to the pluripotential-theoretic Monge-Ampère measure for K . The key ingredient is an approximation theorem for subharmonic functions of logarithmic growth in one complex variable.

How to cite

top

Bloom, Thomas, Levenberg, Norman, and Lyubarskii, Yu.. "A Hilbert Lemniscate Theorem in $\mathbb{C}^2$." Annales de l’institut Fourier 58.6 (2008): 2191-2220. <http://eudml.org/doc/10375>.

@article{Bloom2008,
abstract = {For a regular, compact, polynomially convex circled set $K$ in $\mathbf\{C\}^2$, we construct a sequence of pairs $\lbrace P_n,Q_n\rbrace $ of homogeneous polynomials in two variables with $\{\rm deg\}\,P_n = $$\{\rm deg\}\,Q_n =n$ such that the sets $K_n: = \lbrace (z,w) \in \mathbf\{C\}^2 : |P_n(z,w)| \le 1, \ |Q_n(z,w)| \le 1\rbrace $ approximate $K$ and if $K$ is the closure of a strictly pseudoconvex domain the normalized counting measures associated to the finite set $\lbrace P_n = Q_n = 1\rbrace $ converge to the pluripotential-theoretic Monge-Ampère measure for $K$. The key ingredient is an approximation theorem for subharmonic functions of logarithmic growth in one complex variable.},
affiliation = {University of Toronto Toronto (Canada); Indiana University Bloomington, IN 47405 (USA); Norwegian University of Science and Technology Trondheim, 7491 (Norway)},
author = {Bloom, Thomas, Levenberg, Norman, Lyubarskii, Yu.},
journal = {Annales de l’institut Fourier},
keywords = {Logarithmic potential; Monge-Ampère measure; subharmonic functions; atomization; logarithmic potential},
language = {eng},
number = {6},
pages = {2191-2220},
publisher = {Association des Annales de l’institut Fourier},
title = {A Hilbert Lemniscate Theorem in $\mathbb\{C\}^2$},
url = {http://eudml.org/doc/10375},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Bloom, Thomas
AU - Levenberg, Norman
AU - Lyubarskii, Yu.
TI - A Hilbert Lemniscate Theorem in $\mathbb{C}^2$
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 6
SP - 2191
EP - 2220
AB - For a regular, compact, polynomially convex circled set $K$ in $\mathbf{C}^2$, we construct a sequence of pairs $\lbrace P_n,Q_n\rbrace $ of homogeneous polynomials in two variables with ${\rm deg}\,P_n = $${\rm deg}\,Q_n =n$ such that the sets $K_n: = \lbrace (z,w) \in \mathbf{C}^2 : |P_n(z,w)| \le 1, \ |Q_n(z,w)| \le 1\rbrace $ approximate $K$ and if $K$ is the closure of a strictly pseudoconvex domain the normalized counting measures associated to the finite set $\lbrace P_n = Q_n = 1\rbrace $ converge to the pluripotential-theoretic Monge-Ampère measure for $K$. The key ingredient is an approximation theorem for subharmonic functions of logarithmic growth in one complex variable.
LA - eng
KW - Logarithmic potential; Monge-Ampère measure; subharmonic functions; atomization; logarithmic potential
UR - http://eudml.org/doc/10375
ER -

References

top
  1. P. Ahag, A Dirichlet problem for the complex Monge-Ampère operator in ( f ) , Michigan Math. J. 55 (2007), 123-138 Zbl1152.32020MR2320175
  2. E. Bedford, B. A. Taylor, The Dirichlet problem for a complex Monge-Ampère equation, Inv. Math. 37 (1976), 1-44 Zbl0315.31007MR445006
  3. E. Bedford, B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-40 Zbl0547.32012MR674165
  4. E. Bishop, Mappings of partially analytic spaces, Amer. J. Math. 83 (1961), 209-242 Zbl0118.07701MR123732
  5. Z. Blocki, On the definition of the Monge-Ampère operator in 2 , Math. Ann. 328 (2004), 415-423 Zbl1060.32018MR2036329
  6. T. Bloom, Some applications of the Robin function to multivariable approximation theory, J. Approx. Th. 92 (1998), 1-21 Zbl0896.31003MR1492855
  7. T. Bloom, Random polynomials and Green functions, International Math. Res. Notices 28 (2005), 1689-1708 Zbl1097.32012MR2172337
  8. U. Cegrell, Weak-* convergence of Monge-Ampère measures, Math. Z. 254 (2006), 505-508 Zbl1106.32024MR2244362
  9. J.-P. Demailly, Monge-Ampère operators, Lelong numbers and intersection theory, Complex analysis and geometry (1993), 115-193 Zbl0792.32006MR1211880
  10. D. Drasin, Approximation of subharmonic functions with applications, Approximation, complex analysis, and potential theory 37 (2001), 163-189, Kluwer Acad. Publ., Dordrecht Zbl0991.31001MR1873588
  11. L. Hörmander, An Introduction to Complex Analysis in Several Variables, (1966), Van Nostrand Zbl0138.06203MR203075
  12. L. Hörmander, Notions of Convexity, (1994), Birkhäuser Zbl0835.32001MR1301332
  13. M. Klimek, Pluripotential Theory, (1991), Clarendon Press, Oxford Zbl0742.31001MR1150978
  14. Yu. Lyubarskii, E. Malinnikova, On approximation of subharmonic functions, Journal d’Analyse Math. 83 (2001), 121-149 Zbl0981.31002
  15. L. I. Ronkin, Introduction to the Theory of Entire Functions of Several Variables, (1974), Amer. Math. Soc., Providence Zbl0286.32004MR346175
  16. A. Sadullaev, Rational approximation and pluripolar sets, Math USSR Sbornik 47 (1984), 91-113 Zbl0522.32012
  17. H. Stahl, The convergence of Padé approximants to functions with branch points, J. Approx. Th. 91 (1997), 139-204 Zbl0896.41009MR1484040
  18. B. A. Taylor, An estimate for an extremal plurisubharmonic function on n , Sémin. d’Analyse P. Lelong - P. Dolbeault - H. Skoda, Années 1981/83, Lect. Notes Math. 1028, 318-328 (1983) Zbl0522.32014MR774982
  19. R. Yulmukhametov, Approximation of subharmonic functions, Anal. Math. 11 (1985), 257-282 Zbl0594.31005MR822590

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.