A Hilbert Lemniscate Theorem in
Thomas Bloom[1]; Norman Levenberg[2]; Yu. Lyubarskii[3]
- [1] University of Toronto Toronto (Canada)
- [2] Indiana University Bloomington, IN 47405 (USA)
- [3] Norwegian University of Science and Technology Trondheim, 7491 (Norway)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 6, page 2191-2220
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBloom, Thomas, Levenberg, Norman, and Lyubarskii, Yu.. "A Hilbert Lemniscate Theorem in $\mathbb{C}^2$." Annales de l’institut Fourier 58.6 (2008): 2191-2220. <http://eudml.org/doc/10375>.
@article{Bloom2008,
abstract = {For a regular, compact, polynomially convex circled set $K$ in $\mathbf\{C\}^2$, we construct a sequence of pairs $\lbrace P_n,Q_n\rbrace $ of homogeneous polynomials in two variables with $\{\rm deg\}\,P_n = $$\{\rm deg\}\,Q_n =n$ such that the sets $K_n: = \lbrace (z,w) \in \mathbf\{C\}^2 : |P_n(z,w)| \le 1, \ |Q_n(z,w)| \le 1\rbrace $ approximate $K$ and if $K$ is the closure of a strictly pseudoconvex domain the normalized counting measures associated to the finite set $\lbrace P_n = Q_n = 1\rbrace $ converge to the pluripotential-theoretic Monge-Ampère measure for $K$. The key ingredient is an approximation theorem for subharmonic functions of logarithmic growth in one complex variable.},
affiliation = {University of Toronto Toronto (Canada); Indiana University Bloomington, IN 47405 (USA); Norwegian University of Science and Technology Trondheim, 7491 (Norway)},
author = {Bloom, Thomas, Levenberg, Norman, Lyubarskii, Yu.},
journal = {Annales de l’institut Fourier},
keywords = {Logarithmic potential; Monge-Ampère measure; subharmonic functions; atomization; logarithmic potential},
language = {eng},
number = {6},
pages = {2191-2220},
publisher = {Association des Annales de l’institut Fourier},
title = {A Hilbert Lemniscate Theorem in $\mathbb\{C\}^2$},
url = {http://eudml.org/doc/10375},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Bloom, Thomas
AU - Levenberg, Norman
AU - Lyubarskii, Yu.
TI - A Hilbert Lemniscate Theorem in $\mathbb{C}^2$
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 6
SP - 2191
EP - 2220
AB - For a regular, compact, polynomially convex circled set $K$ in $\mathbf{C}^2$, we construct a sequence of pairs $\lbrace P_n,Q_n\rbrace $ of homogeneous polynomials in two variables with ${\rm deg}\,P_n = $${\rm deg}\,Q_n =n$ such that the sets $K_n: = \lbrace (z,w) \in \mathbf{C}^2 : |P_n(z,w)| \le 1, \ |Q_n(z,w)| \le 1\rbrace $ approximate $K$ and if $K$ is the closure of a strictly pseudoconvex domain the normalized counting measures associated to the finite set $\lbrace P_n = Q_n = 1\rbrace $ converge to the pluripotential-theoretic Monge-Ampère measure for $K$. The key ingredient is an approximation theorem for subharmonic functions of logarithmic growth in one complex variable.
LA - eng
KW - Logarithmic potential; Monge-Ampère measure; subharmonic functions; atomization; logarithmic potential
UR - http://eudml.org/doc/10375
ER -
References
top- P. Ahag, A Dirichlet problem for the complex Monge-Ampère operator in , Michigan Math. J. 55 (2007), 123-138 Zbl1152.32020MR2320175
- E. Bedford, B. A. Taylor, The Dirichlet problem for a complex Monge-Ampère equation, Inv. Math. 37 (1976), 1-44 Zbl0315.31007MR445006
- E. Bedford, B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-40 Zbl0547.32012MR674165
- E. Bishop, Mappings of partially analytic spaces, Amer. J. Math. 83 (1961), 209-242 Zbl0118.07701MR123732
- Z. Blocki, On the definition of the Monge-Ampère operator in , Math. Ann. 328 (2004), 415-423 Zbl1060.32018MR2036329
- T. Bloom, Some applications of the Robin function to multivariable approximation theory, J. Approx. Th. 92 (1998), 1-21 Zbl0896.31003MR1492855
- T. Bloom, Random polynomials and Green functions, International Math. Res. Notices 28 (2005), 1689-1708 Zbl1097.32012MR2172337
- U. Cegrell, Weak-* convergence of Monge-Ampère measures, Math. Z. 254 (2006), 505-508 Zbl1106.32024MR2244362
- J.-P. Demailly, Monge-Ampère operators, Lelong numbers and intersection theory, Complex analysis and geometry (1993), 115-193 Zbl0792.32006MR1211880
- D. Drasin, Approximation of subharmonic functions with applications, Approximation, complex analysis, and potential theory 37 (2001), 163-189, Kluwer Acad. Publ., Dordrecht Zbl0991.31001MR1873588
- L. Hörmander, An Introduction to Complex Analysis in Several Variables, (1966), Van Nostrand Zbl0138.06203MR203075
- L. Hörmander, Notions of Convexity, (1994), Birkhäuser Zbl0835.32001MR1301332
- M. Klimek, Pluripotential Theory, (1991), Clarendon Press, Oxford Zbl0742.31001MR1150978
- Yu. Lyubarskii, E. Malinnikova, On approximation of subharmonic functions, Journal d’Analyse Math. 83 (2001), 121-149 Zbl0981.31002
- L. I. Ronkin, Introduction to the Theory of Entire Functions of Several Variables, (1974), Amer. Math. Soc., Providence Zbl0286.32004MR346175
- A. Sadullaev, Rational approximation and pluripolar sets, Math USSR Sbornik 47 (1984), 91-113 Zbl0522.32012
- H. Stahl, The convergence of Padé approximants to functions with branch points, J. Approx. Th. 91 (1997), 139-204 Zbl0896.41009MR1484040
- B. A. Taylor, An estimate for an extremal plurisubharmonic function on , Sémin. d’Analyse P. Lelong - P. Dolbeault - H. Skoda, Années 1981/83, Lect. Notes Math. 1028, 318-328 (1983) Zbl0522.32014MR774982
- R. Yulmukhametov, Approximation of subharmonic functions, Anal. Math. 11 (1985), 257-282 Zbl0594.31005MR822590
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.