The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A Hilbert Lemniscate Theorem in 2

A constant in pluripotential theory

Zbigniew Błocki (1992)

Annales Polonici Mathematici

Similarity:

We compute the constant sup ( 1 / d e g P ) ( m a x S l o g | P | - S l o g | P | d σ ) : P a polynomial in n , where S denotes the euclidean unit sphere in n and σ its unitary surface measure.

An arithmetic function arising from Carmichael’s conjecture

Florian Luca, Paul Pollack (2011)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let φ denote Euler’s totient function. A century-old conjecture of Carmichael asserts that for every n , the equation φ ( n ) = φ ( m ) has a solution m n . This suggests defining F ( n ) as the number of solutions m to the equation φ ( n ) = φ ( m ) . (So Carmichael’s conjecture asserts that F ( n ) 2 always.) Results on F are scattered throughout the literature. For example, Sierpiński conjectured, and Ford proved, that the range of F contains every natural number k 2 . Also, the maximal order of F has been investigated by Erdős and Pomerance....

Explicit lower bounds for linear forms in two logarithms

Nicolas Gouillon (2006)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We give an explicit lower bound for linear forms in two logarithms. For this we specialize the so-called Schneider method with multiplicity described in []. We substantially improve the numerical constants involved in existing statements for linear forms in two logarithms, obtained from Baker’s method or Schneider’s method with multiplicity. Our constant is around 5 . 10 4 instead of 10 8 .

On the mean values of an analytic function.

G. S. Srivastava, Sunita Rani (1992)

Annales Polonici Mathematici

Similarity:

Let f(z), z = r e i θ , be analytic in the finite disc |z| < R. The growth properties of f(z) are studied using the mean values I δ ( r ) and the iterated mean values N δ , k ( r ) of f(z). A convexity result for the above mean values is obtained and their relative growth is studied using the order and type of f(z).

Complete solutions of a family of cubic Thue equations

Alain Togbé (2006)

Journal de Théorie des Nombres de Bordeaux

Similarity:

In this paper, we use Baker’s method, based on linear forms of logarithms, to solve a family of Thue equations associated with a family of number fields of degree 3. We obtain all solutions to the Thue equation Φ n ( x , y ) = x 3 + ( n 8 + 2 n 6 - 3 n 5 + 3 n 4 - 4 n 3 + 5 n 2 - 3 n + 3 ) x 2 y - ( n 3 - 2 ) n 2 x y 2 - y 3 = ± 1 , for n 0 .