Displaying similar documents to “A Hilbert Lemniscate Theorem in 2

A constant in pluripotential theory

Zbigniew Błocki (1992)

Annales Polonici Mathematici

Similarity:

We compute the constant sup ( 1 / d e g P ) ( m a x S l o g | P | - S l o g | P | d σ ) : P a polynomial in n , where S denotes the euclidean unit sphere in n and σ its unitary surface measure.

An arithmetic function arising from Carmichael’s conjecture

Florian Luca, Paul Pollack (2011)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let φ denote Euler’s totient function. A century-old conjecture of Carmichael asserts that for every n , the equation φ ( n ) = φ ( m ) has a solution m n . This suggests defining F ( n ) as the number of solutions m to the equation φ ( n ) = φ ( m ) . (So Carmichael’s conjecture asserts that F ( n ) 2 always.) Results on F are scattered throughout the literature. For example, Sierpiński conjectured, and Ford proved, that the range of F contains every natural number k 2 . Also, the maximal order of F has been investigated by Erdős and Pomerance....

Explicit lower bounds for linear forms in two logarithms

Nicolas Gouillon (2006)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We give an explicit lower bound for linear forms in two logarithms. For this we specialize the so-called Schneider method with multiplicity described in []. We substantially improve the numerical constants involved in existing statements for linear forms in two logarithms, obtained from Baker’s method or Schneider’s method with multiplicity. Our constant is around 5 . 10 4 instead of 10 8 .

On the mean values of an analytic function.

G. S. Srivastava, Sunita Rani (1992)

Annales Polonici Mathematici

Similarity:

Let f(z), z = r e i θ , be analytic in the finite disc |z| < R. The growth properties of f(z) are studied using the mean values I δ ( r ) and the iterated mean values N δ , k ( r ) of f(z). A convexity result for the above mean values is obtained and their relative growth is studied using the order and type of f(z).

Complete solutions of a family of cubic Thue equations

Alain Togbé (2006)

Journal de Théorie des Nombres de Bordeaux

Similarity:

In this paper, we use Baker’s method, based on linear forms of logarithms, to solve a family of Thue equations associated with a family of number fields of degree 3. We obtain all solutions to the Thue equation Φ n ( x , y ) = x 3 + ( n 8 + 2 n 6 - 3 n 5 + 3 n 4 - 4 n 3 + 5 n 2 - 3 n + 3 ) x 2 y - ( n 3 - 2 ) n 2 x y 2 - y 3 = ± 1 , for n 0 .