Cluster characters for 2-Calabi–Yau triangulated categories

Yann Palu[1]

  • [1] Université Paris 7 - Denis Diderot UMR 7586 du CNRS, case 7012 2 place Jussieu 75251 Paris Cedex 05 (France)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 6, page 2221-2248
  • ISSN: 0373-0956

Abstract

top
Starting from an arbitrary cluster-tilting object T in a 2-Calabi–Yau triangulated category over an algebraically closed field, as in the setting of Keller and Reiten, we define, for each object L , a fraction X ( T , L ) using a formula proposed by Caldero and Keller. We show that the map taking L to X ( T , L ) is a cluster character, i.e. that it satisfies a certain multiplication formula. We deduce that it induces a bijection, in the finite and the acyclic case, between the indecomposable rigid objects of the cluster category and the cluster variables, which confirms a conjecture of Caldero and Keller.

How to cite

top

Palu, Yann. "Cluster characters for 2-Calabi–Yau triangulated categories." Annales de l’institut Fourier 58.6 (2008): 2221-2248. <http://eudml.org/doc/10376>.

@article{Palu2008,
abstract = {Starting from an arbitrary cluster-tilting object $T$ in a 2-Calabi–Yau triangulated category over an algebraically closed field, as in the setting of Keller and Reiten, we define, for each object $L$, a fraction $X(T,L)$ using a formula proposed by Caldero and Keller. We show that the map taking $L$ to $X(T,L)$ is a cluster character, i.e. that it satisfies a certain multiplication formula. We deduce that it induces a bijection, in the finite and the acyclic case, between the indecomposable rigid objects of the cluster category and the cluster variables, which confirms a conjecture of Caldero and Keller.},
affiliation = {Université Paris 7 - Denis Diderot UMR 7586 du CNRS, case 7012 2 place Jussieu 75251 Paris Cedex 05 (France)},
author = {Palu, Yann},
journal = {Annales de l’institut Fourier},
keywords = {Calabi–Yau triangulated category; cluster algebra; cluster category; cluster-tilting object; Calabi-Yau triangulated categories; cluster algebras; cluster-tilting objects},
language = {eng},
number = {6},
pages = {2221-2248},
publisher = {Association des Annales de l’institut Fourier},
title = {Cluster characters for 2-Calabi–Yau triangulated categories},
url = {http://eudml.org/doc/10376},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Palu, Yann
TI - Cluster characters for 2-Calabi–Yau triangulated categories
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 6
SP - 2221
EP - 2248
AB - Starting from an arbitrary cluster-tilting object $T$ in a 2-Calabi–Yau triangulated category over an algebraically closed field, as in the setting of Keller and Reiten, we define, for each object $L$, a fraction $X(T,L)$ using a formula proposed by Caldero and Keller. We show that the map taking $L$ to $X(T,L)$ is a cluster character, i.e. that it satisfies a certain multiplication formula. We deduce that it induces a bijection, in the finite and the acyclic case, between the indecomposable rigid objects of the cluster category and the cluster variables, which confirms a conjecture of Caldero and Keller.
LA - eng
KW - Calabi–Yau triangulated category; cluster algebra; cluster category; cluster-tilting object; Calabi-Yau triangulated categories; cluster algebras; cluster-tilting objects
UR - http://eudml.org/doc/10376
ER -

References

top
  1. Arkady Berenstein, Sergey Fomin, Andrei Zelevinsky, Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), 1-52 Zbl1135.16013MR2110627
  2. Aslak Bakke Buan, Philippe Caldero, Bernhard Keller, Robert J. Marsh, Idun Reiten, Gordana Todorov, Appendix to Clusters and seeds in acyclic cluster algebras Zbl1190.16022
  3. Aslak Bakke Buan, Osamu Iyama, Idun Reiten, Jeanne Scott, Cluster structures for 2-Calabi–Yau categories and unipotent groups 
  4. Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten, Gordana Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), 572-618 Zbl1127.16011MR2249625
  5. Aslak Bakke Buan, Robert J. Marsh, Idun Reiten, Cluster mutation via quiver representations Zbl1193.16016
  6. Aslak Bakke Buan, Robert J. Marsh, Idun Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc. 359 (2007), 323-332 (electronic) Zbl1123.16009MR2247893
  7. P. Caldero, F. Chapoton, R. Schiffler, Quivers with relations arising from clusters ( A n case), Trans. Amer. Math. Soc. 358 (2006), 1347-1364 (electronic) Zbl1137.16020MR2187656
  8. Philippe Caldero, Frédéric Chapoton, Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81 (2006), 595-616 Zbl1119.16013MR2250855
  9. Philippe Caldero, Bernhard Keller, From triangulated categories to cluster algebras Zbl1141.18012
  10. Philippe Caldero, Bernhard Keller, From triangulated categories to cluster algebras II 
  11. Sergey Fomin, Andrei Zelevinsky, Cluster algebras IV: Coefficients Zbl1127.16023
  12. Sergey Fomin, Andrei Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), 497-529 (electronic) Zbl1021.16017MR1887642
  13. Sergey Fomin, Andrei Zelevinsky, Cluster algebras. II. Finite type classification, Invent. Math. 154 (2003), 63-121 Zbl1054.17024MR2004457
  14. Christof Geiss, Bernard Leclerc, Jan Schröer, Partial flag varieties and preprojective algebras Zbl1151.16009
  15. Christof Geiss, Bernard Leclerc, Jan Schröer, Semicanonical bases and preprojective algebras II: A multiplication formula Zbl1132.17004
  16. Christof Geiss, Bernard Leclerc, Jan Schröer, Semicanonical bases and preprojective algebras, Ann. Sci. École Norm. Sup. (4) 38 (2005), 193-253 Zbl1131.17006MR2144987
  17. Christof Geiß, Bernard Leclerc, Jan Schröer, Rigid modules over preprojective algebras, Invent. Math. 165 (2006), 589-632 Zbl1167.16009MR2242628
  18. Osamu Iyama, Idun Reiten, Fomin-Zelevinsky mutation and tilting modules over Calabi–Yau algebras Zbl1162.16007
  19. Osamu Iyama, Yuji Yoshino, Mutations in triangulated categories and rigid Cohen–Macaulay modules Zbl1140.18007
  20. Bernhard Keller, On triangulated orbit categories, Doc. Math. 10 (2005), 551-581 (electronic) Zbl1086.18006MR2184464
  21. Bernhard Keller, Amnon Neeman, The connection between May’s axioms for a triangulated tensor product and Happel’s description of the derived category of the quiver D 4 , Doc. Math. 7 (2002), 535-560 (electronic) Zbl1021.18002
  22. Bernhard Keller, Idun Reiten, Acyclic Calabi-Yau categories Zbl1171.18008
  23. Bernhard Keller, Idun Reiten, Cluster-tilted algebras are Gorenstein and stably Calabi–Yau, Adv. Math. 211 (2007), 123-151 Zbl1128.18007MR2313531
  24. Steffen Koenig, Bin Zhu, From triangulated categories to abelian categories–cluster tilting in a general framework Zbl1133.18005
  25. G. Lusztig, Semicanonical bases arising from enveloping algebras, Adv. Math. 151 (2000), 129-139 Zbl0983.17009MR1758244
  26. Robert Marsh, Markus Reineke, Andrei Zelevinsky, Generalized associahedra via quiver representations, Trans. Amer. Math. Soc. 355 (2003), 4171-4186 (electronic) Zbl1042.52007MR1990581
  27. Goncalo Tabuada, On the structure of Calabi–Yau categories with a cluster tilting subcategory Zbl1122.18007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.