Cluster characters for 2-Calabi–Yau triangulated categories
Yann Palu[1]
- [1] Université Paris 7 - Denis Diderot UMR 7586 du CNRS, case 7012 2 place Jussieu 75251 Paris Cedex 05 (France)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 6, page 2221-2248
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPalu, Yann. "Cluster characters for 2-Calabi–Yau triangulated categories." Annales de l’institut Fourier 58.6 (2008): 2221-2248. <http://eudml.org/doc/10376>.
@article{Palu2008,
abstract = {Starting from an arbitrary cluster-tilting object $T$ in a 2-Calabi–Yau triangulated category over an algebraically closed field, as in the setting of Keller and Reiten, we define, for each object $L$, a fraction $X(T,L)$ using a formula proposed by Caldero and Keller. We show that the map taking $L$ to $X(T,L)$ is a cluster character, i.e. that it satisfies a certain multiplication formula. We deduce that it induces a bijection, in the finite and the acyclic case, between the indecomposable rigid objects of the cluster category and the cluster variables, which confirms a conjecture of Caldero and Keller.},
affiliation = {Université Paris 7 - Denis Diderot UMR 7586 du CNRS, case 7012 2 place Jussieu 75251 Paris Cedex 05 (France)},
author = {Palu, Yann},
journal = {Annales de l’institut Fourier},
keywords = {Calabi–Yau triangulated category; cluster algebra; cluster category; cluster-tilting object; Calabi-Yau triangulated categories; cluster algebras; cluster-tilting objects},
language = {eng},
number = {6},
pages = {2221-2248},
publisher = {Association des Annales de l’institut Fourier},
title = {Cluster characters for 2-Calabi–Yau triangulated categories},
url = {http://eudml.org/doc/10376},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Palu, Yann
TI - Cluster characters for 2-Calabi–Yau triangulated categories
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 6
SP - 2221
EP - 2248
AB - Starting from an arbitrary cluster-tilting object $T$ in a 2-Calabi–Yau triangulated category over an algebraically closed field, as in the setting of Keller and Reiten, we define, for each object $L$, a fraction $X(T,L)$ using a formula proposed by Caldero and Keller. We show that the map taking $L$ to $X(T,L)$ is a cluster character, i.e. that it satisfies a certain multiplication formula. We deduce that it induces a bijection, in the finite and the acyclic case, between the indecomposable rigid objects of the cluster category and the cluster variables, which confirms a conjecture of Caldero and Keller.
LA - eng
KW - Calabi–Yau triangulated category; cluster algebra; cluster category; cluster-tilting object; Calabi-Yau triangulated categories; cluster algebras; cluster-tilting objects
UR - http://eudml.org/doc/10376
ER -
References
top- Arkady Berenstein, Sergey Fomin, Andrei Zelevinsky, Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), 1-52 Zbl1135.16013MR2110627
- Aslak Bakke Buan, Philippe Caldero, Bernhard Keller, Robert J. Marsh, Idun Reiten, Gordana Todorov, Appendix to Clusters and seeds in acyclic cluster algebras Zbl1190.16022
- Aslak Bakke Buan, Osamu Iyama, Idun Reiten, Jeanne Scott, Cluster structures for 2-Calabi–Yau categories and unipotent groups
- Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten, Gordana Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), 572-618 Zbl1127.16011MR2249625
- Aslak Bakke Buan, Robert J. Marsh, Idun Reiten, Cluster mutation via quiver representations Zbl1193.16016
- Aslak Bakke Buan, Robert J. Marsh, Idun Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc. 359 (2007), 323-332 (electronic) Zbl1123.16009MR2247893
- P. Caldero, F. Chapoton, R. Schiffler, Quivers with relations arising from clusters ( case), Trans. Amer. Math. Soc. 358 (2006), 1347-1364 (electronic) Zbl1137.16020MR2187656
- Philippe Caldero, Frédéric Chapoton, Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81 (2006), 595-616 Zbl1119.16013MR2250855
- Philippe Caldero, Bernhard Keller, From triangulated categories to cluster algebras Zbl1141.18012
- Philippe Caldero, Bernhard Keller, From triangulated categories to cluster algebras II
- Sergey Fomin, Andrei Zelevinsky, Cluster algebras IV: Coefficients Zbl1127.16023
- Sergey Fomin, Andrei Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), 497-529 (electronic) Zbl1021.16017MR1887642
- Sergey Fomin, Andrei Zelevinsky, Cluster algebras. II. Finite type classification, Invent. Math. 154 (2003), 63-121 Zbl1054.17024MR2004457
- Christof Geiss, Bernard Leclerc, Jan Schröer, Partial flag varieties and preprojective algebras Zbl1151.16009
- Christof Geiss, Bernard Leclerc, Jan Schröer, Semicanonical bases and preprojective algebras II: A multiplication formula Zbl1132.17004
- Christof Geiss, Bernard Leclerc, Jan Schröer, Semicanonical bases and preprojective algebras, Ann. Sci. École Norm. Sup. (4) 38 (2005), 193-253 Zbl1131.17006MR2144987
- Christof Geiß, Bernard Leclerc, Jan Schröer, Rigid modules over preprojective algebras, Invent. Math. 165 (2006), 589-632 Zbl1167.16009MR2242628
- Osamu Iyama, Idun Reiten, Fomin-Zelevinsky mutation and tilting modules over Calabi–Yau algebras Zbl1162.16007
- Osamu Iyama, Yuji Yoshino, Mutations in triangulated categories and rigid Cohen–Macaulay modules Zbl1140.18007
- Bernhard Keller, On triangulated orbit categories, Doc. Math. 10 (2005), 551-581 (electronic) Zbl1086.18006MR2184464
- Bernhard Keller, Amnon Neeman, The connection between May’s axioms for a triangulated tensor product and Happel’s description of the derived category of the quiver , Doc. Math. 7 (2002), 535-560 (electronic) Zbl1021.18002
- Bernhard Keller, Idun Reiten, Acyclic Calabi-Yau categories Zbl1171.18008
- Bernhard Keller, Idun Reiten, Cluster-tilted algebras are Gorenstein and stably Calabi–Yau, Adv. Math. 211 (2007), 123-151 Zbl1128.18007MR2313531
- Steffen Koenig, Bin Zhu, From triangulated categories to abelian categories–cluster tilting in a general framework Zbl1133.18005
- G. Lusztig, Semicanonical bases arising from enveloping algebras, Adv. Math. 151 (2000), 129-139 Zbl0983.17009MR1758244
- Robert Marsh, Markus Reineke, Andrei Zelevinsky, Generalized associahedra via quiver representations, Trans. Amer. Math. Soc. 355 (2003), 4171-4186 (electronic) Zbl1042.52007MR1990581
- Goncalo Tabuada, On the structure of Calabi–Yau categories with a cluster tilting subcategory Zbl1122.18007
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.