Semicanonical bases and preprojective algebras

Christof Geiss; Bernard Leclerc; Jan Schröer

Annales scientifiques de l'École Normale Supérieure (2005)

  • Volume: 38, Issue: 2, page 193-253
  • ISSN: 0012-9593

How to cite

top

Geiss, Christof, Leclerc, Bernard, and Schröer, Jan. "Semicanonical bases and preprojective algebras." Annales scientifiques de l'École Normale Supérieure 38.2 (2005): 193-253. <http://eudml.org/doc/82658>.

@article{Geiss2005,
author = {Geiss, Christof, Leclerc, Bernard, Schröer, Jan},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {2},
pages = {193-253},
publisher = {Elsevier},
title = {Semicanonical bases and preprojective algebras},
url = {http://eudml.org/doc/82658},
volume = {38},
year = {2005},
}

TY - JOUR
AU - Geiss, Christof
AU - Leclerc, Bernard
AU - Schröer, Jan
TI - Semicanonical bases and preprojective algebras
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2005
PB - Elsevier
VL - 38
IS - 2
SP - 193
EP - 253
LA - eng
UR - http://eudml.org/doc/82658
ER -

References

top
  1. [1] Auslander M., Reiten I., Smalø S., Representation Theory of Artin Algebras, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University Press, Cambridge, 1997, Corrected reprint of the 1995 original. xiv+425pp. Zbl0834.16001MR1476671
  2. [2] Bautista R., On algebras of strongly unbounded representation type, Comment. Math. Helv.60 (3) (1985) 392-399. Zbl0584.16017MR814146
  3. [3] Berenstein A., Fomin S., Zelevinsky A., Cluster algebras III: Upper bounds and double Bruhat cells, Duke Math. J.126 (1) (2005) 1-52. Zbl1135.16013MR2110627
  4. [4] Berenstein A., Zelevinsky A., String bases for quantum groups of type A r , in: I.M. Gelfand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 51-89. Zbl0794.17007MR1237826
  5. [5] Bobiński G., Skowroński A., Geometry of modules over tame quasi-tilted algebras, Colloq. Math.79 (1) (1999) 85-118. Zbl0994.16009MR1671811
  6. [6] Bongartz K., Algebras and quadratic forms, J. London Math. Soc.28 (3) (1983) 461-469. Zbl0532.16020MR724715
  7. [7] Bongartz K., A geometric version of the Morita equivalence, J. Algebra139 (1) (1991) 159-171. Zbl0787.16011MR1106345
  8. [8] Caldero P., Adapted algebras for the Berenstein Zelevinsky conjecture, Transform. Groups8 (1) (2003) 37-50. Zbl1044.17007MR1959762
  9. [9] Caldero P., A multiplicative property of quantum flag minors, Representation Theory7 (2003) 164-176. Zbl1030.17009MR1973370
  10. [10] Caldero P., Marsh R., A multiplicative property of quantum flag minors II, J. London Math. Soc.69 (3) (2004) 608-622. Zbl1053.17009MR2050036
  11. [11] Chapoton F., Fomin S., Zelevinsky A., Polytopal realizations of generalized associahedra, Canad. Math. Bull.45 (2002) 537-566. Zbl1018.52007MR1941227
  12. [12] Crawley-Boevey W., On the exceptional fibres of Kleinian singularities, Amer. J. Math.122 (2000) 1027-1037. Zbl1001.14001MR1781930
  13. [13] Crawley-Boevey W., Geometry of the moment map for representations of quivers, Compositio Math.126 (2001) 257-293. Zbl1037.16007MR1834739
  14. [14] Crawley-Boevey W., Schröer J., Irreducible components of varieties of modules, J. Reine Angew. Math.553 (2002) 201-220. Zbl1062.16019MR1944812
  15. [15] Dlab V., Ringel C.M., The module theoretical approach to quasi-hereditary algebras, in: Representations of Algebras and Related Topics, Kyoto, 1990, Cambridge Univ. Press, Cambridge, 1992, pp. 200-224. Zbl0793.16006MR1211481
  16. [16] Dowbor P., Skowroński A., On Galois coverings of tame algebras, Arch. Math.44 (1985) 522-529. Zbl0576.16029MR797444
  17. [17] Dowbor P., Skowroński A., Galois coverings of representation-infinite algebras, Comment. Math. Helv.62 (1987) 311-337. Zbl0628.16019MR896100
  18. [18] Fomin S., Zelevinsky A., Cluster algebras I: Foundations, J. Amer. Math. Soc.15 (2002) 497-529. Zbl1021.16017MR1887642
  19. [19] Fomin S., Zelevinsky A., Y-systems and generalized associahedra, Annals of Math.158 (3) (2003) 977-1018. Zbl1057.52003MR2031858
  20. [20] Fomin S., Zelevinsky A., Cluster algebras II: Finite type classification, Invent. Math.154 (2003) 63-121. Zbl1054.17024MR2004457
  21. [21] Gabriel P., Auslander–Reiten sequences and representation-finite algebras, in: Representation Theory I, Carleton, 1979, Lecture Notes in Math., vol. 831, Springer-Verlag, Berlin, 1980, pp. 1-71. Zbl0445.16023MR607140
  22. [22] Gabriel P., The universal cover of a representation-finite algebra, in: Representations of Algebras, Puebla, 1980, Lecture Notes in Math., vol. 903, Springer-Verlag, Berlin, 1981, pp. 68-105. Zbl0481.16008MR654725
  23. [23] Geigle W., Lenzing H., A class of weighted projective curves arising in representation theory of finite-dimensional algebras, in: Singularities, Representation of Algebras, and Vector Bundles, Lambrecht, 1985, Lecture Notes in Math., vol. 1273, Springer-Verlag, Berlin, 1987, pp. 265-297. Zbl0651.14006MR915180
  24. [24] Geiß C., Schröer J., Varieties of modules over tubular algebras, Colloq. Math.95 (2003) 163-183. Zbl1033.16004MR1967418
  25. [25] Geiss C., Schröer J., Extension-orthogonal components of nilpotent varieties, Trans. Amer. Math. Soc.357 (2005) 1953-1962. Zbl1111.14045MR2115084
  26. [26] Happel D., Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University Press, Cambridge, 1988, x+208pp. Zbl0635.16017MR935124
  27. [27] Happel D., Ringel C.M., The derived category of a tubular algebra, in: Representation Theory, I, Ottawa, Ont., 1984, Lecture Notes in Math., vol. 1177, Springer-Verlag, Berlin, 1986, pp. 156-180. Zbl0626.16011MR842465
  28. [28] Happel D., Vossieck D., Minimal algebras of infinite representation type with preprojective component, Manuscripta Math.42 (1983) 221-243. Zbl0516.16023MR701205
  29. [29] Kashiwara M., On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J.63 (1991) 465-516. Zbl0739.17005MR1115118
  30. [30] Kashiwara M., Saito Y., Geometric construction of crystal bases, Duke Math. J.89 (1997) 9-36. Zbl0901.17006MR1458969
  31. [31] Leclerc B., Imaginary vectors in the dual canonical basis of U q n , Transform. Groups8 (2003) 95-104. Zbl1044.17009MR1959765
  32. [32] Leclerc B., Dual canonical bases, quantum shuffles and q-characters, Math. Z.246 (2004) 691-732. Zbl1052.17008MR2045836
  33. [33] Leclerc B., Nazarov M., Thibon J.-Y., Induced representations of affine Hecke algebras and canonical bases of quantum groups, in: Studies in Memory of Issai Schur, Progress in Mathematics, vol. 210, Birkhäuser, Basel, 2003. Zbl1085.17010MR1985725
  34. [34] Lenzing H., A K-theoretic study of canonical algebras, in: CMS Conf. Proc., vol. 18, 1996, pp. 433-454. Zbl0859.16009MR1388066
  35. [35] Lenzing H., Coxeter transformations associated with finite dimensional algebras, in: Computational Methods for Representations of Groups and Algebras, Essen, 1997, Progress in Math., vol. 173, Birkhäuser, Basel, 1999. Zbl0941.16007MR1714618
  36. [36] Lenzing H., Meltzer H., Sheaves on a weighted projective line of genus one, and representations of a tubular algebra, in: Representations of Algebras, Ottawa, ON, 1992, CMS Conf. Proc., vol. 14, 1993, pp. 313-337. Zbl0809.16012
  37. [37] Lusztig G., Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc.3 (1990) 447-498. Zbl0703.17008MR1035415
  38. [38] Lusztig G., Quivers, perverse sheaves and quantized enveloping algebras, J. Amer. Math. Soc.4 (1991) 365-421. Zbl0738.17011MR1088333
  39. [39] Lusztig G., Affine quivers and canonical bases, Publ. Math. IHES76 (1994) 365-416. Zbl0776.17013
  40. [40] Lusztig G., Constructible functions on the Steinberg variety, Adv. Math.130 (1997) 365-421. Zbl0906.20028MR1472321
  41. [41] Lusztig G., Semicanonical bases arising from enveloping algebras, Adv. Math.151 (2000) 129-139. Zbl0983.17009MR1758244
  42. [42] Marsh R., Reineke M., Personal communication. 
  43. [43] Reineke M., Multiplicative properties of dual canonical bases of quantum groups, J. Algebra211 (1999) 134-149. Zbl0917.17008MR1656575
  44. [44] Reiten I., Dynkin diagrams and the representation theory of algebras, Notices AMS44 (1997) 546-556. Zbl0940.16009MR1444112
  45. [45] Ringel C.M., Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math., vol. 1099, Springer-Verlag, Berlin, 1984, xiii+376pp. Zbl0546.16013MR774589
  46. [46] Ringel C.M., The preprojective algebra of a quiver, in: Algebras and Modules II, Geiranger, 1966, CMS Conf. Proc., vol. 24, AMS, 1998, pp. 467-480. Zbl0928.16012MR1648647
  47. [47] Ringel C.M., The multisegment duality and the preprojective algebras of type A, Algebra Montpellier Announcements 1.1 (1999) (6 pages). Zbl1010.16014MR1734897
  48. [48] Ringel C.M., Representation theory of finite-dimensional algebras, in: Representations of Algebras, Proceedings of the Durham Symposium 1985, Lecture Note Series, vol. 116, LMS, 1986, pp. 9-79. Zbl0606.16019MR897319
  49. [49] Schröer J., Module theoretic interpretation of quantum minors, in preparation. 
  50. [50] Saito K., Extended affine root systems I, Publ. Res. Inst. Math. Sci.21 (1985) 75-179. Zbl0573.17012MR780892
  51. [51] Zelevinsky A., Personal communication. 
  52. [52] Zelevinsky A., The multisegment duality, in: Documenta Mathematica, Extra Volume, ICM, Berlin, 1998, III, pp. 409–417. Zbl0918.05104MR1648174

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.