Semicanonical bases and preprojective algebras
Christof Geiss; Bernard Leclerc; Jan Schröer
Annales scientifiques de l'École Normale Supérieure (2005)
- Volume: 38, Issue: 2, page 193-253
- ISSN: 0012-9593
Access Full Article
topHow to cite
topGeiss, Christof, Leclerc, Bernard, and Schröer, Jan. "Semicanonical bases and preprojective algebras." Annales scientifiques de l'École Normale Supérieure 38.2 (2005): 193-253. <http://eudml.org/doc/82658>.
@article{Geiss2005,
author = {Geiss, Christof, Leclerc, Bernard, Schröer, Jan},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {2},
pages = {193-253},
publisher = {Elsevier},
title = {Semicanonical bases and preprojective algebras},
url = {http://eudml.org/doc/82658},
volume = {38},
year = {2005},
}
TY - JOUR
AU - Geiss, Christof
AU - Leclerc, Bernard
AU - Schröer, Jan
TI - Semicanonical bases and preprojective algebras
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2005
PB - Elsevier
VL - 38
IS - 2
SP - 193
EP - 253
LA - eng
UR - http://eudml.org/doc/82658
ER -
References
top- [1] Auslander M., Reiten I., Smalø S., Representation Theory of Artin Algebras, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University Press, Cambridge, 1997, Corrected reprint of the 1995 original. xiv+425pp. Zbl0834.16001MR1476671
- [2] Bautista R., On algebras of strongly unbounded representation type, Comment. Math. Helv.60 (3) (1985) 392-399. Zbl0584.16017MR814146
- [3] Berenstein A., Fomin S., Zelevinsky A., Cluster algebras III: Upper bounds and double Bruhat cells, Duke Math. J.126 (1) (2005) 1-52. Zbl1135.16013MR2110627
- [4] Berenstein A., Zelevinsky A., String bases for quantum groups of type , in: I.M. Gelfand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 51-89. Zbl0794.17007MR1237826
- [5] Bobiński G., Skowroński A., Geometry of modules over tame quasi-tilted algebras, Colloq. Math.79 (1) (1999) 85-118. Zbl0994.16009MR1671811
- [6] Bongartz K., Algebras and quadratic forms, J. London Math. Soc.28 (3) (1983) 461-469. Zbl0532.16020MR724715
- [7] Bongartz K., A geometric version of the Morita equivalence, J. Algebra139 (1) (1991) 159-171. Zbl0787.16011MR1106345
- [8] Caldero P., Adapted algebras for the Berenstein Zelevinsky conjecture, Transform. Groups8 (1) (2003) 37-50. Zbl1044.17007MR1959762
- [9] Caldero P., A multiplicative property of quantum flag minors, Representation Theory7 (2003) 164-176. Zbl1030.17009MR1973370
- [10] Caldero P., Marsh R., A multiplicative property of quantum flag minors II, J. London Math. Soc.69 (3) (2004) 608-622. Zbl1053.17009MR2050036
- [11] Chapoton F., Fomin S., Zelevinsky A., Polytopal realizations of generalized associahedra, Canad. Math. Bull.45 (2002) 537-566. Zbl1018.52007MR1941227
- [12] Crawley-Boevey W., On the exceptional fibres of Kleinian singularities, Amer. J. Math.122 (2000) 1027-1037. Zbl1001.14001MR1781930
- [13] Crawley-Boevey W., Geometry of the moment map for representations of quivers, Compositio Math.126 (2001) 257-293. Zbl1037.16007MR1834739
- [14] Crawley-Boevey W., Schröer J., Irreducible components of varieties of modules, J. Reine Angew. Math.553 (2002) 201-220. Zbl1062.16019MR1944812
- [15] Dlab V., Ringel C.M., The module theoretical approach to quasi-hereditary algebras, in: Representations of Algebras and Related Topics, Kyoto, 1990, Cambridge Univ. Press, Cambridge, 1992, pp. 200-224. Zbl0793.16006MR1211481
- [16] Dowbor P., Skowroński A., On Galois coverings of tame algebras, Arch. Math.44 (1985) 522-529. Zbl0576.16029MR797444
- [17] Dowbor P., Skowroński A., Galois coverings of representation-infinite algebras, Comment. Math. Helv.62 (1987) 311-337. Zbl0628.16019MR896100
- [18] Fomin S., Zelevinsky A., Cluster algebras I: Foundations, J. Amer. Math. Soc.15 (2002) 497-529. Zbl1021.16017MR1887642
- [19] Fomin S., Zelevinsky A., Y-systems and generalized associahedra, Annals of Math.158 (3) (2003) 977-1018. Zbl1057.52003MR2031858
- [20] Fomin S., Zelevinsky A., Cluster algebras II: Finite type classification, Invent. Math.154 (2003) 63-121. Zbl1054.17024MR2004457
- [21] Gabriel P., Auslander–Reiten sequences and representation-finite algebras, in: Representation Theory I, Carleton, 1979, Lecture Notes in Math., vol. 831, Springer-Verlag, Berlin, 1980, pp. 1-71. Zbl0445.16023MR607140
- [22] Gabriel P., The universal cover of a representation-finite algebra, in: Representations of Algebras, Puebla, 1980, Lecture Notes in Math., vol. 903, Springer-Verlag, Berlin, 1981, pp. 68-105. Zbl0481.16008MR654725
- [23] Geigle W., Lenzing H., A class of weighted projective curves arising in representation theory of finite-dimensional algebras, in: Singularities, Representation of Algebras, and Vector Bundles, Lambrecht, 1985, Lecture Notes in Math., vol. 1273, Springer-Verlag, Berlin, 1987, pp. 265-297. Zbl0651.14006MR915180
- [24] Geiß C., Schröer J., Varieties of modules over tubular algebras, Colloq. Math.95 (2003) 163-183. Zbl1033.16004MR1967418
- [25] Geiss C., Schröer J., Extension-orthogonal components of nilpotent varieties, Trans. Amer. Math. Soc.357 (2005) 1953-1962. Zbl1111.14045MR2115084
- [26] Happel D., Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University Press, Cambridge, 1988, x+208pp. Zbl0635.16017MR935124
- [27] Happel D., Ringel C.M., The derived category of a tubular algebra, in: Representation Theory, I, Ottawa, Ont., 1984, Lecture Notes in Math., vol. 1177, Springer-Verlag, Berlin, 1986, pp. 156-180. Zbl0626.16011MR842465
- [28] Happel D., Vossieck D., Minimal algebras of infinite representation type with preprojective component, Manuscripta Math.42 (1983) 221-243. Zbl0516.16023MR701205
- [29] Kashiwara M., On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J.63 (1991) 465-516. Zbl0739.17005MR1115118
- [30] Kashiwara M., Saito Y., Geometric construction of crystal bases, Duke Math. J.89 (1997) 9-36. Zbl0901.17006MR1458969
- [31] Leclerc B., Imaginary vectors in the dual canonical basis of , Transform. Groups8 (2003) 95-104. Zbl1044.17009MR1959765
- [32] Leclerc B., Dual canonical bases, quantum shuffles and q-characters, Math. Z.246 (2004) 691-732. Zbl1052.17008MR2045836
- [33] Leclerc B., Nazarov M., Thibon J.-Y., Induced representations of affine Hecke algebras and canonical bases of quantum groups, in: Studies in Memory of Issai Schur, Progress in Mathematics, vol. 210, Birkhäuser, Basel, 2003. Zbl1085.17010MR1985725
- [34] Lenzing H., A K-theoretic study of canonical algebras, in: CMS Conf. Proc., vol. 18, 1996, pp. 433-454. Zbl0859.16009MR1388066
- [35] Lenzing H., Coxeter transformations associated with finite dimensional algebras, in: Computational Methods for Representations of Groups and Algebras, Essen, 1997, Progress in Math., vol. 173, Birkhäuser, Basel, 1999. Zbl0941.16007MR1714618
- [36] Lenzing H., Meltzer H., Sheaves on a weighted projective line of genus one, and representations of a tubular algebra, in: Representations of Algebras, Ottawa, ON, 1992, CMS Conf. Proc., vol. 14, 1993, pp. 313-337. Zbl0809.16012
- [37] Lusztig G., Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc.3 (1990) 447-498. Zbl0703.17008MR1035415
- [38] Lusztig G., Quivers, perverse sheaves and quantized enveloping algebras, J. Amer. Math. Soc.4 (1991) 365-421. Zbl0738.17011MR1088333
- [39] Lusztig G., Affine quivers and canonical bases, Publ. Math. IHES76 (1994) 365-416. Zbl0776.17013
- [40] Lusztig G., Constructible functions on the Steinberg variety, Adv. Math.130 (1997) 365-421. Zbl0906.20028MR1472321
- [41] Lusztig G., Semicanonical bases arising from enveloping algebras, Adv. Math.151 (2000) 129-139. Zbl0983.17009MR1758244
- [42] Marsh R., Reineke M., Personal communication.
- [43] Reineke M., Multiplicative properties of dual canonical bases of quantum groups, J. Algebra211 (1999) 134-149. Zbl0917.17008MR1656575
- [44] Reiten I., Dynkin diagrams and the representation theory of algebras, Notices AMS44 (1997) 546-556. Zbl0940.16009MR1444112
- [45] Ringel C.M., Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math., vol. 1099, Springer-Verlag, Berlin, 1984, xiii+376pp. Zbl0546.16013MR774589
- [46] Ringel C.M., The preprojective algebra of a quiver, in: Algebras and Modules II, Geiranger, 1966, CMS Conf. Proc., vol. 24, AMS, 1998, pp. 467-480. Zbl0928.16012MR1648647
- [47] Ringel C.M., The multisegment duality and the preprojective algebras of type A, Algebra Montpellier Announcements 1.1 (1999) (6 pages). Zbl1010.16014MR1734897
- [48] Ringel C.M., Representation theory of finite-dimensional algebras, in: Representations of Algebras, Proceedings of the Durham Symposium 1985, Lecture Note Series, vol. 116, LMS, 1986, pp. 9-79. Zbl0606.16019MR897319
- [49] Schröer J., Module theoretic interpretation of quantum minors, in preparation.
- [50] Saito K., Extended affine root systems I, Publ. Res. Inst. Math. Sci.21 (1985) 75-179. Zbl0573.17012MR780892
- [51] Zelevinsky A., Personal communication.
- [52] Zelevinsky A., The multisegment duality, in: Documenta Mathematica, Extra Volume, ICM, Berlin, 1998, III, pp. 409–417. Zbl0918.05104MR1648174
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.