Banach algebras of pseudodifferential operators and their almost diagonalization
Karlheinz Gröchenig[1]; Ziemowit Rzeszotnik[2]
- [1] University of Vienna Faculty of Mathematics Nordbergstrasse 15 1090 Wien (Austria)
- [2] University of Wroclaw Mathematical Institute Pl. Grunwaldzki 2/4 50-384 Wroclaw (Poland)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 7, page 2279-2314
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGröchenig, Karlheinz, and Rzeszotnik, Ziemowit. "Banach algebras of pseudodifferential operators and their almost diagonalization." Annales de l’institut Fourier 58.7 (2008): 2279-2314. <http://eudml.org/doc/10378>.
@article{Gröchenig2008,
abstract = {We define new symbol classes for pseudodifferential operators and investigate their pseudodifferential calculus. The symbol classes are parametrized by commutative convolution algebras. To every solid convolution algebra $\mathcal\{A\} $ over a lattice $\Lambda $ we associate a symbol class $M^\{\infty , \mathcal\{A\} \} $. Then every operator with a symbol in $M^\{\infty ,\mathcal\{A\} \} $ is almost diagonal with respect to special wave packets (coherent states or Gabor frames), and the rate of almost diagonalization is described precisely by the underlying convolution algebra $\mathcal\{A\} $. Furthermore, the corresponding class of pseudodifferential operators is a Banach algebra of bounded operators on $L^2(\{\mathbb\{R\}\}^d) $. If a version of Wiener’s lemma holds for $\mathcal\{A\} $, then the algebra of pseudodifferential operators is closed under inversion. The theory contains as a special case the fundamental results about Sjöstrand’s class and yields a new proof of a theorem of Beals about the Hörmander class $S^0_\{0,0\}$.},
affiliation = {University of Vienna Faculty of Mathematics Nordbergstrasse 15 1090 Wien (Austria); University of Wroclaw Mathematical Institute Pl. Grunwaldzki 2/4 50-384 Wroclaw (Poland)},
author = {Gröchenig, Karlheinz, Rzeszotnik, Ziemowit},
journal = {Annales de l’institut Fourier},
keywords = {Pseudodifferential operators; symbol class; symbolic calculus; Banach algebra; inverse-closedness; Wiener’s Lemma; pseudodifferential operators; Wiener's Lemma},
language = {eng},
number = {7},
pages = {2279-2314},
publisher = {Association des Annales de l’institut Fourier},
title = {Banach algebras of pseudodifferential operators and their almost diagonalization},
url = {http://eudml.org/doc/10378},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Gröchenig, Karlheinz
AU - Rzeszotnik, Ziemowit
TI - Banach algebras of pseudodifferential operators and their almost diagonalization
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 7
SP - 2279
EP - 2314
AB - We define new symbol classes for pseudodifferential operators and investigate their pseudodifferential calculus. The symbol classes are parametrized by commutative convolution algebras. To every solid convolution algebra $\mathcal{A} $ over a lattice $\Lambda $ we associate a symbol class $M^{\infty , \mathcal{A} } $. Then every operator with a symbol in $M^{\infty ,\mathcal{A} } $ is almost diagonal with respect to special wave packets (coherent states or Gabor frames), and the rate of almost diagonalization is described precisely by the underlying convolution algebra $\mathcal{A} $. Furthermore, the corresponding class of pseudodifferential operators is a Banach algebra of bounded operators on $L^2({\mathbb{R}}^d) $. If a version of Wiener’s lemma holds for $\mathcal{A} $, then the algebra of pseudodifferential operators is closed under inversion. The theory contains as a special case the fundamental results about Sjöstrand’s class and yields a new proof of a theorem of Beals about the Hörmander class $S^0_{0,0}$.
LA - eng
KW - Pseudodifferential operators; symbol class; symbolic calculus; Banach algebra; inverse-closedness; Wiener’s Lemma; pseudodifferential operators; Wiener's Lemma
UR - http://eudml.org/doc/10378
ER -
References
top- P. Auscher, Remarks on the local Fourier bases, Wavelets: mathematics and applications (1994), 203-218 Zbl0882.42026MR1247517
- R. Balan, P. G. Casazza, C. Heil, Z. Landau, Density, overcompleteness, and localization of frames. II. Gabor systems., J. Fourier Anal. Appl. 12 (2006), 309-344 Zbl1097.42022MR2235170
- A. G. Baskakov, Wiener’s theorem and asymptotic estimates for elements of inverse matrices, Funktsional. Anal. i Prilozhen 24 (1990), 64-65 Zbl0728.47021
- R. Beals, Characterization of pseudodifferential operators and applications, Duke Math. J. 44 (1977), 45-57 Zbl0353.35088MR435933
- B. Bekka, Square integrable representations, von Neumann algebras and an application to Gabor analysis, J. Fourier Anal. Appl. 10 (2004), 325-349 Zbl1064.46058MR2078261
- S. Bochner, R. S. Phillips, Absolutely convergent Fourier expansions for non-commutative normed rings, Ann. of Math. 43 (1942), 409-418 Zbl0060.27204MR7939
- F. F. Bonsall, J. Duncan, Complete normed algebras, (1973), Springer-Verlag, New York Zbl0271.46039MR423029
- J.-M. Bony, J.-Y. Chemin, Espaces fonctionnels associés au calcul de Weyl-Hörmander, Bull. Soc. Math. France 122 (1994), 77-118 Zbl0798.35172MR1259109
- A. Boulkhemair, Remarks on a Wiener type pseudodifferential algebra and Fourier integral operators, Math. Res. Lett. 4 (1997), 53-67 Zbl0905.35103MR1432810
- A. Boulkhemair, estimates for Weyl quantization, J. Funct. Anal. 165 (1999), 173-204 Zbl0934.35217MR1696697
- L. H. Brandenburg, On identifying the maximal ideals in Banach algebras, J. Math. Anal. Appl. 50 (1975), 489-510 Zbl0302.46042MR377523
- O. Christensen, An introduction to frames and Riesz bases, (2003), Birkhäuser Boston Inc., Boston, MA Zbl1017.42022MR1946982
- K. deLeeuw, An harmonic analysis for operators. I. Formal properties, Illinois J. Math. 19 (1975), 593-606 Zbl0313.43018MR383002
- H. G. Feichtinger, Gewichtsfunktionen auf lokalkompakten Gruppen, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 188 (1979), 451-471 Zbl0447.43004MR599884
- H. G. Feichtinger, Banach convolution algebras of Wiener type, In (1983), 509-524 Zbl0528.43001MR751019
- H. G. Feichtinger, Generalized amalgams, with applications to Fourier transform, Canad. J. Math. 42 (1990), 395-409 Zbl0733.46014MR1062738
- H. G. Feichtinger, Modulation spaces on locally compact abelian groups, In (2003), 99-140, Chennai, India
- H. G. Feichtinger, K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions. I, J. Functional Anal. 86 (1989), 307-340 Zbl0691.46011MR1021139
- H. G. Feichtinger, K. Gröchenig, Gabor wavelets and the Heisenberg group: Gabor expansions and short time fourier transform from the group theoretical point of view, (1992), 359-398, Wavelets: A tutorial in theory and applications Zbl0849.43003MR1161258
- H. G. Feichtinger, K. Gröchenig, Gabor frames and time-frequency analysis of distributions, J. Functional Anal. 146 (1997), 464-495 Zbl0887.46017MR1452000
- G. B. Folland, Harmonic Analysis in Phase Space, (1989), Princeton Univ. Press, Princeton, NJ Zbl0682.43001MR983366
- J. J. F. Fournier, J. Stewart, Amalgams of and , Bull. Amer. Math. Soc. (N.S.) 13 (1985), 1-21 Zbl0593.43005MR788385
- I. Gel’fand, D. Raikov, G. Shilov, Commutative normed rings, (1964), Chelsea Publishing Co., New York
- K. Gröchenig, Foundations of time-frequency analysis, (2001), Birkhäuser Boston Inc., Boston, MA Zbl0966.42020MR1843717
- K. Gröchenig, Localization of frames, Banach frames, and the invertibility of the frame operator, J. Fourier Anal. Appl. 10 (2004), 105-132 Zbl1055.42018MR2054304
- K. Gröchenig, Composition and spectral invariance of pseudodifferential operators on modulation spaces, J. Anal. Math. 98 (2006), 65-82 Zbl1148.47036MR2254480
- K. Gröchenig, Time-frequency analysis of Sjöstrand’s class, Revista Mat. Iberoam 22 (2006), 703-724 Zbl1127.35089
- K. Gröchenig, C. Heil, Modulation spaces and pseudodifferential operators, Integral Equations Operator Theory 34 (1999), 439-457 Zbl0936.35209MR1702232
- K. Gröchenig, C. Heil, Modulation spaces as symbol classes for pseudodifferential operators, (2003), 151-170, Wavelets and Their Applications
- K. Gröchenig, M. Leinert, Wiener’s lemma for twisted convolution and Gabor frames, J. Amer. Math. Soc. 17 (2004), 1-18 Zbl1037.22012
- K. Gröchenig, S. Samarah, Non-linear approximation with local Fourier bases, Constr. Approx. 16 (2000), 317-331 Zbl0973.42025MR1759892
- E. Hernández, G. Weiss, A first course on wavelets, (1996), CRC Press, Boca Raton, FL Zbl0885.42018MR1408902
- L. Hörmander, The analysis of linear partial differential operators. III, 274 (1985), Springer-Verlag, Berlin Zbl0601.35001MR781536
- S. Jaffard, Propriétés des matrices “bien localisées” près de leur diagonale et quelques applications, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), 461-476 Zbl0722.15004
- N. Lerner, Y. Morimoto, A Wiener algebra for the Fefferman-Phong inequality, Sémin. Équ. Dériv. Partielles (2006), Seminaire: Equations aux Dérivées Partielles. 2005–2006 Zbl1122.35163MR2276082
- C. E. Rickart, General theory of Banach algebras, (1960), The University Series in Higher Mathematics. D. van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York Zbl0095.09702MR115101
- R. Rochberg, K. Tachizawa, Pseudodifferential operators, Gabor frames, and local trigonometric bases, (1998), 171-192, Gabor analysis and algorithms, Birkhäuser Boston, Boston, MA Zbl0890.42009MR1601103
- W. Rudin, Functional analysis, (1973), McGraw-Hill Book Co., New York Zbl0253.46001MR365062
- J. Sjöstrand, An algebra of pseudodifferential operators, Math. Res. Lett. 1 (1994), 185-192 Zbl0840.35130MR1266757
- J. Sjöstrand, Wiener type algebras of pseudodifferential operators, Séminaire sur les Équations aux Dérivées Partielles, 1994–1995 (1995), pages Exp. No. IV, 21 École Polytech, Palaiseau Zbl0880.35145MR1362552
- J. Sjöstrand, Pseudodifferential operators and weighted normed symbol spaces, Preprint (2007) Zbl1199.35410MR2414412
- E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, (1993), Princeton Univ. Press, Princeton, NJ Zbl0821.42001MR1232192
- E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, (1971), Princeton Univ. Press, Princeton, NJ Zbl0232.42007MR304972
- J. Toft, Subalgebras to a Wiener type algebra of pseudo-differential operators, Ann. Inst. Fourier (Grenoble) 51 (2001), 1347-1383 Zbl1027.35168MR1860668
- J. Toft, Continuity properties for modulation spaces, with applications to pseudo-differential calculus. I, J. Funct. Anal. 207 (2004), 399-429 Zbl1083.35148MR2032995
- J. Toft, Continuity properties for modulation spaces, with applications to pseudo-differential calculus. II, Ann. Global Anal. Geom. 26 (2004), 73-106 Zbl1098.47045MR2054576
- J. Toft, Continuity and Schatten properties for pseudo-differential operators on modulation spaces, 172 (2007), 173-206, Oper. Theory Adv. Appl., Birkhäuser, Basel Zbl1133.35110MR2308511
- J. Ueberberg, Zur Spektralinvarianz von Algebren von Pseudodifferentialoperatoren in der -Theorie, Manuscripta Math. 61 (1988), 459-475 Zbl0674.47033MR952090
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.